Efficient Sequence Embedding For SARS-CoV-2
Variants Classification

.

SARWAN ALI (sali85@student.gsu.edu)

=> Visiting Researcher at Bento’s Lab
=> 2nd Year Ph.D. Student at Georgia State University, Atlanta, GA



mailto:sali85@student.gsu.edu

Table of Content

Motivation

Problem

Real-World Applications
Challenges

Previous Work

Kernel Method
Proposed Approach
Dataset Statistics
Results

Conclusion



Motivation

® In-depth studies of alterations in the spike protein to classify and predict
amino acid changes in SARS-CoV-2 are crucial in understanding the immune
invasion and host-to-host transmission properties of SARS-CoV-2 and its
variants

® Knowledge of mutations and variants will help identify transmission patterns
of each variant that will help devise appropriate public health interventions to
prevent rapid spread

® This will also help in vaccine design and efficacy



Research Problem

® How can we design a fixed length representation of protein sequences that can
enable us to apply sophisticated Classification models on the protein
sequences



Real World Applications

® Genomic surveillance: Tracking the spread of pathogens in terms of genomic
content

® Realtime identification of new and rapidly emerging variants

® Track the spread of known variants in new municipalities, regions, countries
and continents




Challenges

® Mutations happen disproportionately in the spike region of the genome

® Since new variants are emerging, not much information is available about
these variants

® Generating fixed-length feature vectors from variable length sequences



Previous Work

® Some efforts have been done to perform classification of SARS-CoV-2 spike
sequences

® However, those methods are not generalizable to disproportionality of
mutations

® Although they were successful in getting high predictive accuracy, it is not
clear if the proposed methods are robust and will give the same predictive
performance on different types of data



Kernel Method

® A method that allows us to apply linear classifiers to non-linear problems by
mapping non-linear data into a higher-dimensional space

® Kernel-based methods (e.g., SVM) are proven useful for several machine
learning (ML) tasks such as sequence classification

® There are two challenges involved with kernel methods in general
o Kernel computation (requires exponential complexity to compute dot product)
o scalability (storing n x n matrix in memory is not possible when n, the number of data points,
is too large)

® The computational complexity problem can be solved using approximate
methods
® The scalability issue remains for the typical kernel methods in general



Our Contribution

® We propose an efficient embedding method that encompasses the qualities
of kernel methods while avoiding both computation and scalability
challenges

® To address the computational challenge, given a biological sequence, we
take the k-mers, compute a sketch of the sequence and take the dot product,
which avoids computing the whole spectrum (frequency count)

® Since our method computes with low dimensional vectors (sketches) for
sequences rather than an n x n matrix or full-length spectrum, it can easily be
scaled to a large number of sequences, hence addressing the scalability
problem

® Our proposed fast and alignment-free spectrum method can be used as input
to any distance (e.g., k nearest neighbors) and non-distance (decision tree)
based ML methods for classification and clustering tasks



Proposed Approach

® Use Of Spike Sequence

® Using Hashing To Generate Sketches

® Applying Classification Models



Spike Sequence

® Since the spike protein is the entry point of the virus to the host cell, it is an
important characterizing feature of a coronavirus

® the mRNA vaccines (e.g., Pfizer and Moderna) for COVID-19 are designed to
target only the SARS-CoV-2 spike protein (unlike traditional vaccines which
comprise an entire virome)

® Since the spike region is sufficient to characterize most of the important
features of a viral sample, yet is much smaller in length, we focus on an
embedding approach tailored to the spike region of the sequences

Non-structural Proteins (ORF1ab)  Structural Proteins (S, E, M, and N

-+ > - >
5/ Spike Protein(s) 3
266 13,468 21.563 25,384 29.674



Using Hashing To Generate Sketches

Build k-mers

M|D|P|E|G|R|K | M|L|S |V  SpikeSequence

4-mers




Using Hashing To Generate Sketches

Numerical Representation Of k-mers

® Given a kmer and Alphabet 2 => ACDEFGHIKLMNPQRSTVWXY

® For each character in k-mer
o Find index i of the character in alphabet
Sort the k-mer
Find position n of character in sorted k-mer
The final numerical value v of the character is i x [Z|"
Repeat the above process for all characters in k-mers and concat v to get nk-mer

® Repeat the process for all k-mers

(@]
(@]
(@]
(@]



Using Hashing To Generate Sketches
Apply Hash Function

® |Initialize Local Sketch sk having m dimensions
o mis tunable parameter => 2"
® Compute Hash Value
o hVal = (a1 x nk-mer + b1) % p) % m
o al=>random value between 2 and m-1
o b1=>random value between O and m-1
o p =>any 4 digit prime number

Increment sk[hVal] by 1
Repeat the process for all k-mers within a sequence to get final sketch
Normalize sk by dividing it by sum(sk) x h

o h =>number of hash functions



Using Hashing To Generate Sketches
Using Multiple Hash Function

® We can use multiple hash function h

® In that case, we compute normalized sk for each hash function separately

® Concat all sk together to get final sketch

® Repeat the process for all sequences



Algorithm 1: Peplomer2Vec Computation

1: Input: Set of Sequences S, integers k, m, p, £.h

2: Output: ¢

3: function COMPUTESKETCH(S, k, m, p, 2.h)

4: d =]

5: m =210 &> take integer power of 2

6: p=4999 > any 4 digit prime number, p > m

7: for s € Sdo © for each sequence

8 kmersSet = BUILDKMERS(s,k)

9: LSketchArr =] i Local Sketch Array
10: = starting loop for multiple hash functions for each s
11: for hashLoop + 1 to hdo = # of Hash Func.
12: LocalSketch = [0]*m
13: al = RANDOMINT(2, m-1) > range 2 to m-1
14: bl = RANDOMINT((), m-1) > range 0 to m-1
15: for kmer € EmersSet do = kmers in s
16: NumKmer =0
17: for kmersindex € kmer do
18: charPosition = ¥.index(kmersIndex)
19: sKmer = SORT(kmer)

20: position = sKmer.index(kmersIndex)

21: pos = charPosition x (|X[Pestton)

22: NumKmer = NumKmer + pos

23: hVal =((al * NumKmer + bl) % p) % m

24: LocalSketch[hVal] ++

25: denum = sum(LocalSketch) x h

26: nLocalSketch = LecalSketch 1, poing-wise
divide

27: LSketchArr.Concat(nLocalSketch)

28: $.append(LSketchArr)

29: return ¢
D




Mo, M.

Lineage  Region Labels Mutation of  se
SiGen. UEnCes
D a ta S et B.1.1.7 UK (Galloway et al. 2021} Alpha  B/17 33649
B.1.617.2 India Delta 8BA17 ®75
AY A India Delta - 5493
B.1.2 LsA - - 333
B.1 LsA - - 292
B.1.177 Spain {Hoderolt el al. 2020) - - 243
® Extracted 7000 sequences Pl Brazil (Naveca el al. 2021) Gamma 10721 194
B.1.1 UK - 163
from GISAID B.1.429  Calilornia Epsilon 3/5 107
B.1.526 Mew York (West Jr et al. 2021) lota 616 104
. H : AY.12 India Delta - 101
https://gisaid.org/ BII60  Trame : _ 9
. B.1.351 South Alrica (Galloway et al. 2021) Bela 921 b
® 22 variants used as class B.1.427  California (Zhang el al 2021) Epsilon 3/5 65
B.1.1.214 Japan - - 6
label B.1.1.519 USA - - 56
D2 Australia - - 55
B.1.221 Netherlands - - 52
B.1.177.21 Denmark - - 47
B.1.258  Germany - - 46
B.1.243  USA - - 36
E.1 Japan - - 32
Total - - - TOO0

Table 1: SARS-CoV-2 dataset statistics for 22 wvariants.
The character *-" means that information not available. The
fourth column shows the total number of mutations in S
(spike/peplomer region) and [ull length genome (Gen.).
e
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Existing Baseline Models

® Spike2Vec

® PWM2Vec

® String Kernel

® Wasserstein Distance Guided Representation Learning (WDGRL)

® Spaced k-mers






Results

® Changing number of
Hash functions

Parameterh  Algo.  Acc. Prec. Recall Fl Fl ROC Train
(Weiz.) (Macro) AUC Time
(sec.)
SVM 0845 (1.848 (0.845 0.836 (L.675 (.837 4.034
Number NB 0612 0.739 0.612 0.635 0.447 (.731 0.708
of Hash MLP (819 (.820 0819 (.813 (.604 (800 12.754
Func- K]N:'IN (1806 (1.821 (0.806 0.801 (L6106 0.797 (1.965
tions: 1 RF (1.854 (1.855 (.854 0.844 (1.680 (L836 1.705
o LR (1.482 (.243 (0.482 0.318 (.030 (1.500) 3.492
DT (1841 (1.844 (.541 (.833 (.663 (.829 0.327
SVM 0848 (1.858 (.548 (.541 (1.681 (1.848 9501
Number NB (1.732 0.776 0.732 0.741 (0.555 0.771 1.440)
of Hash MLFP (1835 (1.825 (.835 (.825 (.622 (.819 13.893
Func- K]":JN (1821 (.818 (.821 0.811 .616 (.803 1.472
tions: 2 RF 0.863 0.867 0.863 0.854 0.703 0.851 2.627
o LR (1.500 0.264 (0.500 (.333 (.031 (0.500 11.907
DT (1845 (1.856 (0.545 (.541 (1.683 (1.839 (1.956
SVM 0842 (1.845 (.842 (.832 (.678 (840 14.189
Number NB (1.639 0.741 0.639 .655 (0.474 0.736 2100
of Hash MLP (817 (.816 0.817 0.809 (.608 (.802 15490
Func- K]N:'IN (.811 (1.812 (0.511 0.804 (L6106 0.797 1.981
tions: 3 RF (1.852 (1.852 (0.852 (.841 (1.68Y (1.842 2.966
LR (1.482 (1.233 (0.482 0.314 (.030 (1.500) 8.324
DT (1841 (1.846 (.541 (.833 .679 (.837 1.279

Table 2: Classification results showing the effect of chang-
ing number of hash functions with k=3 for k-mers in Pe-
plomer2Vec method. Best values are shown in bold.



Results

® Comparison with

SOTA

Embeddings Algo.  Acc Prec. Recall Il Fl ROC Train
(Weig.)  (Macro) AUC Time
(sec.)
SVM (L8335 0.853 0.855 0.843 0.689 (L843 61.112
Spike2Vec (Ali NB 0.476 0.716 0476 0.535 0.459 0.726 13.292 )
and Pat- MLP  0.803 0.803 0.803 0.797 0.596 0.797 127.066
terson KN_N 0.812 0.815 0.812 0.805 0.608 0.794 15.970
2021) RF (.856 0.854 0.856 0.844 0.683 0.839 2’_1 141
LR (.859 0.852 0.859 0.844 0.690 0.842 64.027
DT 0.849 0.849 0.849 0.839 0.677 0.837 4.286
SVM 0818 0.820 0818 0.810 0.606 0.807 22,710
NB 0.610 0.667 0610 0.607 0.218 0.631 1.456
PWM2Vec(Ali  MLP 0812 0.792 0.812 0.794 0.530 0.770 35.197
ctal. KNN - 0.767 0.790 0.767 0.760 0.565 0.773 1.033
2022) RF 0.824 0.843 0.824 0.813 0.616 0.803 8.290
LR 0.822 0.813 0.822 0.811 0.605 0.802 471.659
DT 0.803 0.800 0.803 0.795 0.581 0.791 4.100
SVM  0.845 0.833 0.846 0.821 0.631 0.812 7.350
NB 0.753 0.821 0.755 0.774 0.602 (L.825 0.178
String Ker- MLP  0.831 0.829 (.838 0.823 0.624 (L818 12.652
nel (Farhan KNN  (0.829 0.822 0.827 0.827 0.623 0.791 0.326
etal. 2017) RF 0.847 0.844 0.841 0.835 0.666 0.824 1464
LR 0.845 0.843 0.843 0.820 0.628 0.812 1.869
DT 0.822 0.829 0.824 0.829 0.631 (L826 0.243
SVM  0.792 0.769 0.792 0.772 0.455 0.736 0.335
NB 0.724 0.755 0.724 0.726 0.434 0727 0.018
WDGRL (Shen  MLP  0.799 0.779 0.799 0.784 0.505 0.755 7.348
etal. KNN  0.800 0.799 0.800 0.792 0.546 0.766 0.094
2018) RE 0.796 0.793 0.796 0.789 0.560 0776 0.393
LR 0.752 0.693 0.752 0.716 0.262 (L.648 0.091
DT 0.790 0.799 0.790 0.788 0.557 0.768 0.009
SVM  0.852 0.841 0.852 0.836 0.678 0.840 2218.347
Spaced - NB 0.655 0.742 0.655 0.658 0.481 0.749 267.243
mors (Singh MLP  0.809 0.810 0.809 0.802 0.608 0.812 2072.029
Sckhon ct al. KNN 0.821 0.810 0.821 0.805 0.591 0.788 55.140
2017) RF 0.851 0.842 0.851 0.834 0.665 0.833 646.557
LR 0.855 0.848 0.855 0.840 0.682 0.840 200477
DT 0.853 0.850 0.853 0.841 0.685 0.842 98.089
SVM  (0.848 0.858 0.848 0.841 0.681 (0.848 9.801
NB 0.732 0776 0.732 0.741 0.555 0771 1.440
N . MLP  (.835 0.825 0.835 0.825 0.622 0.819 13.893
[PV NN 0821 0818 0821 0811 0616 0803 | 1472
i RF 0.863 0.867 0.863 0.854 0.703 0.851 2627
LR 0.500 0.264 0.500 0.333 0.031 0.500 11.907
DT 0.845 0.856 0.845 0.841 0.683 0.839 0.956

Table 3: Classification results for different evaluation met-
rics using the proposed and SOTA methods. Best values are

shown in bold.
B



Parameter k. Algo.  Acc. Prec. Recall F1 Fl ROC Train
(Weig.) (Macro) AUC Time
(sec.)

SVM 0848 0858 0848 0841 0681 0848 | 9.801
Res u Its NB 0732 0776 0732 0741 0555 0771 | 1440
MLP 0835 0825 0835 0825 062 0819 | 13.893
k=3 KNN 0821 0818 0821 0811 0616 0803 | 1472
RE 0863 0867 0863 0854 0703 0851 | 2.627
LR 0500 0264 0500 0333 0031 0500 | 11.907
DT 0845 0856 0845 0841 0683 0839 | 0.956

® Effect of k for k-mers SVM 0850 0847 0850 0836 0680 0839 | 8827
NB 0640 0715 0640 0640 0463 0721 | 1432

MLP 0826 0823 082 0816 0629 0813 | 13.375

k=5 KNN 0818 0824 0818 0812 0621 0801 | 1319

RF 0857 0853 0857 0843 0690 0842 |2322

LR 0483 0237 0483 0315 0030 0500 |7.219

DT 0844 0840 0844 0833 0667 0834 | 0987

SVM  0.853 0.854 0.853 0.841 0.691 0.846 9.782
NB 0.642 0.721 0.642 0.644 0.452 0.721 1.398
MLP  0.831 0.826 0.831 0.821 0.634 0.818 13.363
k=7 KNN  0.823 0.827 0.823 0.817 0.637 0.816 1.378
RF 0.856 0.854 0.856 0.844 0.692 0.845 2.644
LR 0.485 0.236 0.485 0.317 0.030 0.500 7.942
DT 0.842 0.841 0.842 0.833 0.656 0.830 1.090

SVM  0.849 0.847 0.849 0.838 0.676 0.836 10.099
NB 0.644 0.714 0.644 0.651 0.437 0.707 1.540
MLP  0.833 0.830 0.833 0.825 0.625 0.810 12.938
k=9 KNN  0.820 0.826 0.820 0.815 0.622 0.802 1.385
RF 0.853 0.852 0.853 0.842 0.679 0.835 2.634
LR 0.485 0.236 0.485 0.317 0.030 0.500 8.140
DT 0.836 0.836 0.836 0.828 0.647 0.821 1.127

Table 4: Classification results showing the effect of k for k-
mers with & = 2 for Peplomer2Vec. Best values are shown
n bold.



Results

® Embedding Generation time

Embeddings Runtime (Sec.)
Spike2Vec (Al and Patterson 2021) 354.061 160 |- -|—— PWM2Vec
PWM2Vec (Ali et al. 2022) 163.257 g —$— Peplomers2Vec
String Approx. (Farhan et al. 2017) 2292.245 = 1200
WDGRL (Shen et al. 2018) 438.188 E QO b S
Spaced k-mers (Singh, Sekhon et al. 2017) 12901.808 =
Peplomer2Vec 47.401 2 404
Y0 Improv. of Peplomer2Vec from PWM2Vec 70.9% ' ' '
: 1,000 3,000 5,000 7,000
%0 Improv. of Peplomer2Vec {rom Spaced k-mers 99.6% j

Number of Sequences

Table 5: Embedding generation runtime for different meth-  Figure 2: Embedding generation runtime of PWM2Vec and
ods. Best value is shown in bold. The percentage improve-  Peplomer2Vec with increasing number of sequences.
ment of runtime 1is also given for Peplomer2Vec.
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Conclusion

* We propose an efficient and
alignment-free method to generate
sketches for the spike protein
sequences using the idea of hashing

* We show that our method is not only
generated quickly but also improved
the classification results compared to
SOTA

* We performed extensive
experiments on real-world biological
protein sequence data to validate the
proposed model using different
evaluation metrics




m

Evaluating the method for larger
sets of sequence data (multi-million
sequences)

Applying the proposed method to
other virus data such as Zika

Use Deep Learning models

Evaluate the robustness




Questions!!




Do Reach Out For Any Questions

® Email: sali85@student.gsu.edu

® Waebsite: https://sarwanpasha.github.io/

® Google Scholar:
https://scholar.google.com/citations?user=9dtXSoAAAAAJ&hl=en
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