
Advanced Topics: Neural Networks Introduction
Perceptron, Multi-layer Perceptrons, and Backpropagation

Sarwan Ali

Department of Computer Science
Georgia State University

j Understanding Neural Networks j

1 / 28



Today’s Learning Journey

1 Introduction to Neural Networks

2 The Perceptron

3 Multi-layer Perceptrons (MLPs)

4 Backpropagation

5 Applications and Extensions

6 Summary and Key Takeaways

2 / 28



What are Neural Networks?

Biological Inspiration: Inspired by the human brain’s network of neurons

Mathematical Model: Computational model consisting of interconnected nodes
(artificial neurons)

Learning Paradigm: Learns patterns from data through adjusting connection weights

Universal Approximators: Can approximate any continuous function given sufficient
neurons

SomaDendrites Axon

3 / 28



Why Neural Networks?

Advantages:

Non-linear pattern recognition

Parallel processing capability

Fault tolerance

Adaptive learning

Handle noisy data well

Applications:

Image recognition

Natural language processing

Speech recognition

Medical diagnosis

Financial forecasting

Key Insight

Neural networks excel at finding complex, non-linear relationships in data that traditional
linear methods cannot capture.

4 / 28



The Perceptron: Building Block of Neural Networks

Definition: Simplest form of artificial neuron (Frank Rosenblatt, 1957)

Binary Classifier: Separates data into two classes using a linear decision boundary

Linear Model: Computes weighted sum of inputs plus bias

x1

x2

xn

...

w1
w2

wn

Σ

b

f y

5 / 28



Perceptron Mathematical Model

Mathematical Formulation:

Net Input: z =
n∑

i=1

wixi + b = wTx+ b (1)

Output: y = f (z) =

{
1 if z ≥ 0

0 if z < 0
(2)

Components:

x = [x1, x2, . . . , xn]
T : Input vector

w = [w1,w2, . . . ,wn]
T : Weight vector

b: Bias term
f (·): Step activation function

Geometric Interpretation

The perceptron creates a hyperplane: wTx+ b = 0 that separates the input space into two
regions.

6 / 28



Perceptron Learning Algorithm

Goal: Find weights w and bias b that correctly classify training data

Algorithm Steps:
1 Initialize weights w and bias b randomly (or to zero)
2 For each training example (x(i), t(i)):

Compute output: y (i) = f (wTx(i) + b)
Update weights if prediction is wrong:

Weight Update Rule

w← w + η(t(i) − y (i))x(i) (3)

b ← b + η(t(i) − y (i)) (4)

where η is the learning rate and t(i) is the true label.

Repeat until convergence or maximum iterations reached
7 / 28



Perceptron Example: AND Gate

Truth Table for AND Gate:
x1 x2 y

0 0 0
0 1 0
1 0 0
1 1 1

Solution: w1 = 0.5,w2 = 0.5, b = −0.7

−0.5 0 0.5 1 1.5
−0.5

0

0.5

1

1.5

x1

x 2

Class 0
Class 1

Decision Boundary

8 / 28



Perceptron Limitations

The XOR Problem: Perceptron cannot solve linearly non-separable problems

XOR Truth Table:

x1 x2 y

0 0 0
0 1 1
1 0 1
1 1 0

−0.5 0 0.5 1 1.5
−0.5

0

0.5

1

1.5

x1

x 2

Key Limitation

Linear Separability: Single perceptron can only learn linearly separable functions. No single
line can separate the XOR classes!

Solution: Use multiple perceptrons in layers → Multi-layer Perceptrons (MLPs)
9 / 28



Multi-layer Perceptrons: Beyond Linear Separability

Key Idea: Stack multiple layers of perceptrons to learn non-linear functions

x1

x2

x3

Input Layer

h1

h2

h3

h4

Hidden Layer

y1

y2

Output Layer

Architecture Components:

Input Layer: Receives input features

Hidden Layer(s): Intermediate processing layers

Output Layer: Produces final predictions
10 / 28



MLP Mathematical Formulation

Forward Pass Computation:

For a 3-layer MLP:

Hidden Layer: h = f (W(1)x+ b(1)) (5)

Output Layer: y = f (W(2)h+ b(2)) (6)

Notation:

W(l): Weight matrix for layer l

b(l): Bias vector for layer l

f (·): Activation function (non-linear)

Universal Approximation Theorem

An MLP with at least one hidden layer and sufficient neurons can approximate any continuous
function to arbitrary precision.

11 / 28



Activation Functions

Why Non-linear Activations? Without non-linearity, multiple layers collapse to a single
linear transformation.

Common Activation Functions:

Sigmoid: σ(z) = 1
1+e−z

Tanh: tanh(z) = ez−e−z

ez+e−z

ReLU: ReLU(z) = max(0, z)

Softmax: softmax(zi ) =
ezi∑
j e

zj
−4 −2 0 2 4

0

0.5

1

z

f
(z
)

Sigmoid
ReLU

Activation Function Properties

Good activation functions are: non-linear, differentiable, computationally efficient, and avoid
vanishing gradients.

12 / 28



Solving XOR with MLP

Architecture: 2 inputs → 2 hidden units → 1 output

x1

x2

h1

h2

y

w11 = 1

w21 = 1

w12 = 1

w22 = −1

w1 = 1

w2 = −1

Solution Strategy:

h1 learns to detect OR pattern: h1 = σ(x1 + x2 − 0.5)

h2 learns to detect AND pattern: h2 = σ(x1 − x2 + 0.5)

Output combines: y = σ(h1 − h2 − 0.5) = OR AND NOT AND = XOR

13 / 28



The Learning Challenge: Backpropagation

Problem: How do we train MLPs? The perceptron learning rule doesn’t work for hidden
layers!

Solution: Backpropagation Algorithm (Rumelhart, Hinton, Williams, 1986)

Key Ideas:

Use gradient descent to minimize error

Apply chain rule to compute gradients

Propagate errors backward through the network

Update weights layer by layer

Backpropagation Overview

Forward Pass: Compute predictions from inputs to outputs
Backward Pass: Compute gradients from outputs to inputs
Weight Update: Adjust weights using computed gradients

14 / 28



Loss Functions

We need to define what ”error” means to minimize it

Common Loss Functions:

Mean Squared Error (Regression):

L(y, ŷ) =
1

2

n∑
i=1

(yi − ŷi )
2 (7)

Cross-entropy (Classification):

L(y, ŷ) = −
n∑

i=1

yi log(ŷi ) (8)

Loss Function Properties

Good loss functions are: differentiable, convex (when possible), and provide meaningful
gradients for learning.

15 / 28



Backpropagation Algorithm: Mathematical Derivation

Goal: Compute ∂L
∂wij

for all weights using chain rule

Chain Rule Application:

∂L

∂w
(l)
ij

=
∂L

∂z
(l)
j

·
∂z

(l)
j

∂w
(l)
ij

(9)

where z
(l)
j =

∑
i w

(l)
ij a

(l−1)
i + b

(l)
j is the pre-activation

Define Local Gradient (Delta):

δ
(l)
j =

∂L

∂z
(l)
j

(10)

Then:
∂L

∂w
(l)
ij

= δ
(l)
j · a

(l−1)
i (11)

∂L

∂b
(l)
j

= δ
(l)
j (12)

16 / 28



Computing Deltas: Forward and Backward

Output Layer Delta:

δ
(L)
j =

∂L

∂a
(L)
j

·
∂a

(L)
j

∂z
(L)
j

(13)

For MSE loss and sigmoid activation:

δ
(L)
j = (a

(L)
j − yj) · a

(L)
j · (1− a

(L)
j ) (14)

Hidden Layer Delta (Backpropagation):

δ
(l)
i =

∑
j

w
(l+1)
ij δ

(l+1)
j

 · f ′(z(l)i ) (15)

Key Insight

Errors propagate backward: hidden layer errors are weighted sums of errors from the next
layer, scaled by activation derivatives.

17 / 28



Backpropagation Algorithm Steps

Training Algorithm:

1 Initialize: Randomly initialize all weights and biases
2 For each training example or batch:

1 Forward Pass:

Compute activations for all layers: a(l) = f (W(l)a(l−1) + b(l))

2 Backward Pass:

Compute output layer deltas: δ(L) = ∇a(L)L⊙ f ′(z (L))
Backpropagate deltas: δ(l) = ((W(l+1))T δ(l+1))⊙ f ′(z (l))

3 Weight Update:

Update weights: W(l) ←W(l) − ηδ(l)(a(l−1))T

Update biases: b(l) ← b(l) − ηδ(l)

3 Repeat until convergence or maximum iterations

where η is the learning rate and ⊙ denotes element-wise multiplication.

18 / 28



Backpropagation: Computational Graph View

Visual representation of gradient flow:

x

W(1)

h

W(2)

ŷ L
f1 f2

∂L
∂h

∂L
∂ŷ

∂L
∂W(1)

∂L
∂W(2)

Forward Pass Backward Pass

Key Principle: Gradients flow backward through the computational graph, following the chain
rule at each node.

19 / 28



Gradient Descent Optimization

Gradient Descent: Iterative optimization algorithm to minimize loss function
Update Rule:

θt+1 = θt − η∇θL(θt) (16)

where θ represents all parameters (weights and biases)
Variants:

Batch Gradient Descent: Uses entire dataset for each update

Stochastic Gradient Descent (SGD): Uses single example for each update

Mini-batch Gradient Descent: Uses small batch of examples

−2 −1 0 1 2 3 4

0

2

4

Parameter θ

L
os
s
L
(θ
)

20 / 28



Training Considerations and Best Practices

Hyperparameter Selection:

Learning Rate (η): Too high → divergence, too low → slow convergence
Network Architecture: Number of layers and neurons per layer
Batch Size: Balance between computation efficiency and gradient accuracy
Epochs: Number of complete passes through training data

Common Problems:

Vanishing Gradients: Gradients become very small in deep networks
Exploding Gradients: Gradients become very large, causing instability
Overfitting: Model memorizes training data, poor generalization
Local Minima: Optimization gets stuck in suboptimal solutions

Best Practice

Use techniques like weight initialization, regularization, and adaptive learning rates to improve
training stability and performance.

21 / 28



Practical Implementation Example

Simple 2-layer MLP for Binary Classification:

x1

x2

x3

Input: 3 features

h1

h2

Hidden: 2 neurons

y

Output: 1 probability

ReLU
Sigmoid

Forward Pass:

h = ReLU(W1x+ b1) (17)

y = σ(wT
2 h+ b2) (18)

Loss: Binary cross-entropy: L = −[t log(y) + (1− t) log(1− y)]

22 / 28



Real-World Applications

Computer Vision:
Image classification and object detection
Medical image analysis
Autonomous vehicle perception

Natural Language Processing:
Sentiment analysis and text classification
Machine translation
Chatbots and language models

Other Domains:
Financial forecasting and fraud detection
Recommendation systems
Drug discovery and bioinformatics
Game playing (AlphaGo, chess engines)

Success Story

Deep neural networks have achieved human-level performance in image recognition, game
playing, and many other tasks previously thought impossible for machines.

23 / 28



Modern Extensions and Architectures

Beyond Basic MLPs:

Convolutional Neural Networks (CNNs): For image processing

Recurrent Neural Networks (RNNs): For sequential data
Long Short-Term Memory (LSTM): For long-term dependencies

Transformers: For attention-based processing

Generative Adversarial Networks (GANs): For data generation

Advanced Techniques:

Dropout and batch normalization

Residual connections and skip connections

Attention mechanisms

Transfer learning and pre-trained models

Evolution

Neural networks have evolved from simple perceptrons to complex architectures with billions of
parameters, enabling breakthrough applications in AI.

24 / 28



Summary: From Perceptron to Deep Learning

Key Concepts Covered:

1 Perceptron: Linear binary classifier, foundation of neural networks

2 Multi-layer Perceptrons: Non-linear function approximators

3 Activation Functions: Enable non-linear transformations

4 Backpropagation: Efficient algorithm for training MLPs

5 Gradient Descent: Optimization technique for parameter updates

Progression Timeline:

Perceptron (1957)

MLP (1970s)

Backprop (1986)

Deep Learning (2000s+)

25 / 28



Key Mathematical Insights

Universal Approximation:
”Any continuous function can be approximated by a neural network with sufficient
hidden units”

Gradient-Based Learning:

∂L

∂w
=

∂L

∂y
· ∂y
∂z
· ∂z
∂w

(19)

Non-linearity is Crucial:

Without activation functions: f (f (x)) = f 2(x) (still linear)
With activation functions: σ(W2σ(W1x)) (non-linear)

Deep Learning Foundation

The principles learned here form the mathematical foundation for all modern deep learning
architectures and applications.

26 / 28



Next Steps and Further Learning

Immediate Next Topics:

Regularization techniques (dropout, L1/L2 regularization)
Advanced optimization algorithms (Adam, RMSprop)
Convolutional Neural Networks for computer vision
Recurrent Neural Networks for sequence modeling

Practical Implementation:

Implement basic MLP from scratch in Python/NumPy
Use frameworks like TensorFlow, PyTorch, or Keras
Experiment with different architectures and hyperparameters
Apply to real datasets and problems

Resources for Further Study:

”Deep Learning” by Goodfellow, Bengio, and Courville
Online courses (Coursera, edX, fast.ai)
Research papers and conferences (NeurIPS, ICML, ICLR)

27 / 28



Thank You!

Questions and Discussion

j Neural Networks: The Foundation of Modern AI j

Contact: sali85@student.gsu.edu

28 / 28


	Introduction to Neural Networks
	The Perceptron
	Multi-layer Perceptrons (MLPs)
	Backpropagation
	Applications and Extensions
	Summary and Key Takeaways

