
Advanced Topics - Deep Learning Basics
Introduction to Deep Networks, Activation Functions, and Common Architectures

Sarwan Ali

Department of Computer Science
Georgia State University

j Understanding Deep Learning j

1 / 29



Today’s Learning Journey

1 Introduction to Deep Learning

2 Neural Network Fundamentals

3 Activation Functions

4 Deep Network Architectures

5 Training Deep Networks

6 Common Challenges

7 Modern Deep Learning Techniques

8 Practical Considerations

9 Applications and Future Directions

10 Summary and Key Takeaways

2 / 29



What is Deep Learning?

Deep Learning is a subset of machine learning that
uses artificial neural networks with multiple layers (deep
networks) to model and understand complex patterns in
data.

Key Characteristics:

Multiple hidden layers (typically 3+ layers)

Automatic feature extraction

Non-linear transformations

End-to-end learning

x1

x2

x3

x4

y1

y2

Input
Hidden 1 Hidden 2 Hidden 3

Output

3 / 29



Deep Learning vs Traditional ML

Traditional Machine Learning

Manual feature engineering

Shallow learning algorithms

Limited representation power

Good for structured data

Interpretable models

Examples: Linear Regression, SVM, Decision
Trees, Random Forest

Deep Learning

Automatic feature learning

Deep neural networks

High representation power

Excellent for unstructured data

Black-box models

Examples: CNNs, RNNs, Transformers, GANs

4 / 29



The Perceptron: Building Block

Single Perceptron:

y = f (
n∑

i=1

wixi + b) (1)

= f (wTx+ b) (2)

Where:

x: input vector

w: weight vector

b: bias term

f : activation function

x1

x2

x3

1

∑
f y

w1

w2

w3

b

5 / 29



Multi-Layer Perceptron (MLP)

Forward Propagation:

h(1) = f (1)(W(1)x+ b(1)) (3)

h(2) = f (2)(W(2)h(1) + b(2)) (4)

... (5)

y = f (L)(W(L)h(L−1) + b(L)) (6)

Where:

h(l): hidden layer l activations

W(l): weight matrix for layer l

b(l): bias vector for layer l

f (l): activation function for layer l

L: total number of layers

6 / 29



Why Activation Functions?

Purpose of Activation Functions:

Introduce non-linearity into the network

Enable learning of complex patterns

Without activation functions, deep networks collapse to linear models

Mathematical Insight:

Without activation: y = W(2)(W(1)x+ b(1)) + b(2) (7)

= W(2)W(1)x+W(2)b(1) + b(2) (8)

= W′x+ b′ (Linear transformation) (9)

7 / 29



Common Activation Functions

1. Sigmoid Function σ(x) = 1
1+e−x

Properties:

Range: (0, 1)

Smooth, differentiable

Prone to vanishing gradients

2. Hyperbolic Tangent (Tanh)

tanh(x) =
ex − e−x

ex + e−x
(10)

Properties:

Range: (−1, 1)

Zero-centered

Still suffers from vanishing gradients

−4 −2 2 4

−1

1

x

f (x)

Sigmoid
Tanh

8 / 29



ReLU and Its Variants

3. ReLU (Rectified Linear Unit)

ReLU(x) = max(0, x) (11)

Advantages:

Simple computation

No vanishing gradient problem

Sparse activation

Disadvantages:

Dying ReLU problem

Not differentiable at x = 0

4. Leaky ReLU

LeakyReLU(x) =

{
x if x > 0

αx if x ≤ 0
(12)

where α is a small positive constant (e.g.,
0.01).

−2 2

1

2

3

x

f (x)ReLU
Leaky ReLU

9 / 29



Advanced Activation Functions

5. Swish/SiLU (Sigmoid Linear Unit)

Swish(x) = x · σ(x) = x

1 + e−x
(13)

6. GELU (Gaussian Error Linear Unit)

GELU(x) = x · Φ(x) = x

2
[1 + erf(

x√
2
)] (14)

Choosing Activation Functions:

Hidden layers: ReLU (default choice), Swish, GELU

Output layer:
Binary classification: Sigmoid
Multi-class classification: Softmax
Regression: Linear (no activation)

10 / 29



Feedforward Neural Networks

Architecture: Information flows in one direction from input to output
Characteristics:

Fully connected layers

No cycles or loops

Each neuron connects to all neurons in next layer

Universal function approximators

Applications:

Classification tasks

Regression problems

Feature learning

Function approximation

x1

x2

x3

y1

y2

Input
Hidden 1 Hidden 2

Output

11 / 29



Convolutional Neural Networks (CNNs)

Designed for processing grid-like data (images, time series)
Key Components:

Convolutional layers: Feature extraction

Pooling layers: Dimensionality reduction

Fully connected layers: Classification

Advantages:

Translation invariance

Parameter sharing

Local connectivity

Hierarchical feature learning

Applications:

Image classification, Object detection

Medical imaging, Computer vision

Image

32× 32

Conv

28× 28

Pool

14× 14

Conv

10× 10

FC

Classes

Convolution Operation:

(f ∗ g)(i , j) =
∑
m

∑
n

f (m, n) · g(i −m, j − n)

(15)

12 / 29



Recurrent Neural Networks (RNNs)

Designed for sequential data processing
Key Characteristics:

Memory through hidden states

Process sequences of variable length

Share parameters across time steps

Can model temporal dependencies

RNN Equations:

ht = f (Whhht−1 +Wxhxt + bh)
(16)

yt = Whyht + by (17)

Variants:

LSTM: Long Short-Term Memory

GRU: Gated Recurrent Unit

RNN

x1

y1

RNN

x2

y2

RNN

x3

y3

RNN

x4

y4

h1 h2 h3
h0

t = 1 t = 2 t = 3 t = 4

Applications:

Natural Language Processing

Time series forecasting

Speech recognition

Machine translation

13 / 29



Backpropagation Algorithm

Core idea: Compute gradients of loss function with respect to network parameters using chain
rule

Forward Pass: Compute predictions

a(l) = f (l)(z(l)) where z(l) = W(l)a(l−1) + b(l) (18)

Backward Pass: Compute gradients

δ(l) =
∂L
∂z(l)

(19)

∂L
∂W(l)

= δ(l)(a(l−1))T (20)

∂L
∂b(l)

= δ(l) (21)

δ(l−1) = (W(l))T δ(l) ⊙ f ′(l−1)(z(l−1)) (22)

Where L is the loss function and ⊙ denotes element-wise multiplication.
14 / 29



Gradient Descent Optimization

Parameter Update Rule:

θt+1 = θt − η∇θL(θt) (23)

Where η is the learning rate and θ represents all network parameters.

Variants:

Batch Gradient Descent: Uses entire dataset

Stochastic Gradient Descent (SGD): Uses single examples

Mini-batch Gradient Descent: Uses small batches

Advanced Optimizers:

Adam: Adaptive moment estimation

RMSprop: Root mean square propagation

AdaGrad: Adaptive gradient algorithm

15 / 29



Vanishing and Exploding Gradients

Vanishing Gradients:

Gradients become very small in early layers

Common with sigmoid/tanh activations

Deep networks fail to learn

Solutions:

Use ReLU activations

Proper weight initialization

Batch normalization

Residual connections

Exploding Gradients:

Gradients become very large

Unstable training

Parameters oscillate wildly

Solutions:

Gradient clipping

Proper weight initialization

Lower learning rates

Batch normalization

1 2 3 4 5 6
0

50

100

Layer Depth

G
ra
d
ie
n
t
M
ag
n
it
u
d
e

Vanishing
Exploding

16 / 29



Overfitting in Deep Networks

Overfitting: Model performs well on training data but poorly on unseen data
Causes:

Too many parameters

Insufficient training data

Complex model architecture

Training for too long

Detection:

Large gap between training and validation
loss

Validation accuracy decreases while
training accuracy increases

Regularization Techniques:

Dropout: Randomly set neurons to zero

L1/L2 Regularization: Add penalty
terms

Early Stopping: Stop when validation
loss increases

Data Augmentation: Increase training
data

Batch Normalization: Normalize layer
inputs

Dropout Mathematical Formulation:

h̃ = r ⊙ h where ri ∼ Bernoulli(p) (24)

During training: p is dropout probability. During inference: scale by (1− p).
17 / 29



Batch Normalization

Problem: Internal covariate shift - distribution of layer inputs changes during training
Batch Normalization Algorithm:

µB =
1

m

m∑
i=1

xi (Batch mean) (25)

σ2
B =

1

m

m∑
i=1

(xi − µB)
2 (Batch variance) (26)

x̂i =
xi − µB√
σ2
B + ϵ

(Normalize) (27)

yi = γx̂i + β (Scale and shift) (28)

Where γ and β are learnable parameters, ϵ is a small constant for numerical stability.
Benefits:

Faster training convergence, Higher learning rates possible
Reduces internal covariate shift, Acts as regularization

18 / 29



Skip Connections and ResNet

Residual Learning: Learn residual mapping instead of direct mapping
Traditional Network:

H(x) = desired mapping (29)

Residual Network:

H(x) = F(x) + x (30)

F(x) = H(x)− x (31)

Advantages:

Solves vanishing gradient problem

Enables very deep networks (100+ layers)

Identity mapping when F(x) = 0

Improved gradient flow x

Conv + ReLU

Conv

+

H(x)

F(x)

xInput

Output

19 / 29



Attention Mechanisms

Motivation: Focus on relevant parts of input sequence
Attention Formula:

Attention(Q,K ,V ) = softmax

(
QKT

√
dk

)
V (32)

Where:

Q: Query matrix

K : Key matrix

V : Value matrix

dk : Dimension of key vectors

Self-Attention: Q, K , and V are all derived from the same input sequence
Applications:

Transformer Architecture: GPT, BERT, T5

Computer Vision: Vision Transformers (ViTs)

Multimodal: CLIP, DALL-E
20 / 29



Weight Initialization

Why Important: Poor initialization can lead to vanishing/exploding gradients
Common Initialization Methods:

Xavier/Glorot Initialization:

W ∼ N
(
0,

2

nin + nout

)
(33)

He Initialization (for ReLU):

W ∼ N
(
0,

2

nin

)
(34)

LeCun Initialization:

W ∼ N
(
0,

1

nin

)
(35)

Where nin is number of input units and nout is number of output units.
Rule of Thumb: Use He initialization for ReLU networks, Xavier for sigmoid/tanh networks.

21 / 29



Hyperparameter Tuning

Key Hyperparameters in Deep Learning:
Architecture:

Number of layers

Number of neurons per layer

Activation functions

Network topology

Training:

Learning rate

Batch size

Number of epochs

Optimizer choice

Regularization:

Dropout rate

L1/L2 regularization strength

Early stopping patience

Data augmentation parameters

Tuning Strategies:

Grid search

Random search

Bayesian optimization

Automated ML (AutoML)

Best Practice: Start with established architectures and fine-tune from there.

22 / 29



Model Evaluation and Validation

Evaluation Strategies:
Train/Validation/Test Split: 60
Cross-Validation: K-fold cross-validation
Hold-out Validation: Simple train/test split

Metrics for Different Tasks:
Classification:

Accuracy

Precision, Recall, F1-score

ROC-AUC

Confusion Matrix

Regression:

Mean Squared Error (MSE)

Mean Absolute Error (MAE)

R-squared (R2)

Root Mean Squared Error (RMSE)

Learning Curves:
0 20 40

1

2

3

Epochs

L
os
s

Training
Validation

23 / 29



Real-World Applications

Computer Vision:

Image classification

Object detection

Facial recognition

Medical imaging

Autonomous driving

Natural Language Processing:

Machine translation

Sentiment analysis

Chatbots and virtual assistants

Text summarization

Question answering

Other Domains:

Speech: Recognition, synthesis

Robotics: Control, navigation

Gaming: AlphaGo, game AI

Finance: Fraud detection, trading

Healthcare: Drug discovery, diagnosis

Art: Style transfer, generation

Emerging Applications:

Climate modeling

Protein folding

Scientific discovery

Creative content generation

24 / 29



Current Trends and Future Directions

Current Hot Topics:
Architecture Innovations:

Transformers: Attention is all you need

Vision Transformers: ViT, DeiT, Swin

Efficient Architectures: MobileNet,
EfficientNet

Neural Architecture Search: AutoML
for architectures

Training Innovations:

Self-supervised learning

Few-shot learning

Meta-learning

Continual learning

Large-Scale Models:

Large Language Models (GPT, BERT)

Foundation models

Multimodal models

Scaling laws

Challenges and Opportunities:

Interpretability and explainability

Robustness and adversarial attacks

Energy efficiency

Fairness and bias

Democratization of AI

25 / 29



Key Concepts Review

What We Covered Today:
1 Deep Learning Fundamentals:

Multi-layer neural networks
Forward and backward propagation
Universal function approximation

2 Activation Functions:
ReLU family (ReLU, Leaky ReLU)
Traditional functions (Sigmoid, Tanh)
Modern variants (Swish, GELU)

3 Common Architectures:
Feedforward Networks (MLPs)
Convolutional Neural Networks (CNNs)
Recurrent Neural Networks (RNNs)

4 Training Challenges and Solutions:
Vanishing/exploding gradients
Overfitting and regularization
Modern techniques (BatchNorm, ResNet, Attention)

26 / 29



Best Practices Summary

Architecture Design:

Start simple, then add complexity

Use proven architectures as baselines

Consider computational constraints

Match architecture to problem type

Training Strategy:

Use appropriate initialization

Monitor training/validation curves

Apply regularization techniques

Use modern optimizers (Adam, AdamW)

Debugging and Optimization:

Overfit on small dataset first

Check gradient magnitudes

Visualize learned features

Use learning rate schedules

Evaluation:

Use proper train/validation/test splits

Report multiple metrics

Consider domain-specific evaluation

Test on diverse datasets

27 / 29



Next Steps in Your Deep Learning Journey

Immediate Next Steps:

Implement basic neural networks from scratch

Experiment with different activation functions

Try various optimization algorithms

Practice with real datasets

Advanced Topics to Explore:

Specialized Architectures: Transformers, GANs, VAEs

Advanced Training: Transfer learning, multi-task learning

Optimization: Learning rate scheduling, gradient clipping

Deployment: Model compression, quantization, edge deployment

Recommended Resources:

Deep Learning by Ian Goodfellow, Yoshua Bengio, Aaron Courville

Papers With Code (paperswithcode.com)

PyTorch/TensorFlow tutorials

Coursera Deep Learning Specialization
28 / 29



Thank You!

Questions and Discussion

j Remember: Deep learning is both an art and a science.
Practice, experiment, and stay curious! j


	Introduction to Deep Learning
	Neural Network Fundamentals
	Activation Functions
	Deep Network Architectures
	Training Deep Networks
	Common Challenges
	Modern Deep Learning Techniques
	Practical Considerations
	Applications and Future Directions
	Summary and Key Takeaways

