
Advanced Topics - Feature Engineering
Feature Selection, Creation, and Transformation Techniques

Sarwan Ali

Department of Computer Science
Georgia State University

{ Crafting Better Features {

1 / 27

Today’s Learning Journey

1 Introduction to Feature Engineering

2 Feature Selection

3 Feature Creation

4 Feature Transformation

5 Best Practices and Examples

2 / 27

What is Feature Engineering?

Feature Engineering is the process of:

Selecting relevant features

Creating new features from existing ones

Transforming features for better performance

Key Insight

”Feature engineering is often the difference between a
good model and a great model”

Raw Data

Engineered
Features

ML Model

{

3 / 27

Why Feature Engineering Matters

Impact on Model Performance:

Improves accuracy and generalization

Reduces overfitting

Speeds up training

Makes models more interpretable

Real-World Importance:

80% of ML project time

Domain expertise crucial

Often more impactful than algorithm
choice

0 2 4

0.6

0.8

1

Feature Engineering Quality

M
o
d
el

P
er
fo
rm

an
ce

4 / 27

Feature Selection Overview

Definition

Feature selection is the process of selecting a subset of relevant features for model
construction.

Benefits:

Reduces overfitting

Improves accuracy

Reduces training time

Simplifies model interpretation

Reduces storage requirements

Challenges:

Curse of dimensionality

Feature interactions

Computational complexity

Domain knowledge required

5 / 27

Types of Feature Selection

Feature Selec-

tion Methods

Filter Methods Wrapper Methods
Embedded

Methods

Correlation

Mutual Info

Statistical Tests

Chi-square

Forward
Selection

Backward Elim.

RFE

Genetic Alg.

LASSO

Ridge

Tree-based

Feature Imp.

6 / 27

Filter Methods

Characteristics:
Independent of ML algorithm
Fast and scalable
Based on statistical properties

Correlation-based:

Pearson correlation

Spearman correlation

Kendall’s tau

Information-based:

Mutual Information

Information Gain

Gain Ratio

Statistical Tests:

Chi-square test

ANOVA F-test

t-test

Variance-based:

Variance threshold

Quasi-constant features

Formula: Mutual Information

I (X ;Y) =
∑

x∈X
∑

y∈Y p(x , y) log
(

p(x ,y)
p(x)p(y)

)
7 / 27

Wrapper Methods

Characteristics:

Use ML algorithm performance as criterion
More accurate but computationally expensive
Risk of overfitting

Forward Selection:

1 Start with empty set

2 Add best feature iteratively

3 Stop when no improvement

Backward Elimination:

1 Start with all features

2 Remove worst feature iteratively

3 Stop when performance degrades

Recursive Feature Elimination (RFE):

1 Train model with all features

2 Rank features by importance

3 Remove least important

4 Repeat until desired number

Pros & Cons

Pros: Considers feature interactions
Cons: Computationally expensive

8 / 27

Embedded Methods

Characteristics:

Feature selection integrated into model training

Balance between filter and wrapper methods

Algorithm-specific

Regularization-based:

LASSO (L1 regularization)

Ridge (L2 regularization)

Elastic Net

LASSO Objective

minβ
1
2n ||y − Xβ||22 + λ||β||1

Tree-based Methods:

Random Forest feature importance

Gradient Boosting feature importance

Permutation importance

Feature Importance

Based on how much each feature decreases
impurity when used for splits

9 / 27

Feature Creation Techniques

Definition

Feature creation involves generating new features from existing ones to capture hidden
patterns and relationships.

Feature
Creation

Polynomial
Features

Interaction
Features

Domain-Specific
Temporal
Features

Mathematical
Transforms

Encoding
Categorical

Text Features
Aggregation
Features

10 / 27

Polynomial and Interaction Features

Polynomial Features:

Capture non-linear relationships

Powers of existing features

Example: x , x2, x3, ...

Mathematical Form

For features x1, x2:
{1, x1, x2, x21 , x1x2, x22 , ...}

Interaction Features:

Capture feature relationships

Products of feature pairs

Example: x1 × x2

0 0.5 1 1.5 2 2.5 3
0

1

2

3

x1

x 2

Example: House Prices

Original: size, bedrooms
Polynomial: size2, bedrooms2

Interaction: size × bedrooms
11 / 27

Mathematical Transformations

Log Transformations:
Handle skewed distributions

log(x + 1) for zero values

Makes data more normal

Square Root:
Moderate skewness reduction
√

x or
√

x + c

Preserves zero values

Reciprocal:
1/x transformation

Changes scale dramatically

Careful with zero values

2 4 6 8 10
0

1

2

3

Original Values

T
ra
n
sf
or
m
ed

V
al
u
es

log(x)√
x
1
x

Box-Cox Transformation

y(λ) =

{
xλ−1
λ if λ ̸= 0

log(x) if λ = 0

12 / 27

Encoding Categorical Variables

One-Hot Encoding:

Binary columns for each category

Suitable for nominal data

Can create many columns

Label Encoding:

Integer mapping of categories

Suitable for ordinal data

Implies ordering

Target Encoding:

Mean target value per category

Risk of overfitting

Useful for high cardinality

Color Red Blue Green
Red 1 0 0
Blue 0 1 0
Green 0 0 1
Blue 0 1 0

Table: One-Hot Encoding

Advanced Techniques:

Binary encoding

Frequency encoding

Hash encoding

Embedding (for deep learning)

13 / 27

Temporal Feature Engineering

Time-based Features:

Hour, day, month, year

Day of week, weekend indicator

Season, quarter

Business hours indicator

Cyclical Encoding:

Sine/cosine transformations

Preserve cyclical nature

Example: hour of day

Cyclical Encoding

sin
(
2π·hour

24

)
cos

(
2π·hour

24

)

Lag Features:

Previous time period values

Moving averages

Rolling statistics

Date Differences:

Days since last event

Time to next holiday

Age calculations

0 10 20
−1

0

1

Hour
V
al
u
e sin

cos

14 / 27

Feature Scaling and Normalization

Why Scale Features?

Different features have different scales, which can bias algorithms that use distance measures.

Min-Max Scaling:
Scales to [0,1] range

Preserves relationships

Sensitive to outliers

Formula

xscaled = x−xmin
xmax−xmin

Robust Scaling:

Uses median & IQR, Less sensitive to outliers

Formula

xrobust =
x−median(x)

IQR(x)

Standardization (Z-score):
Mean = 0, Std = 1

Assumes normal distribution

Not bounded to specific range

Formula

xstd = x−µ
σ

Unit Vector Scaling:

Scales to unit norm, Useful for text data

Formula

xunit =
x

||x ||2
15 / 27

Handling Skewed Distributions

Identifying Skewness:

Skewness coefficient

Visual inspection (histograms)

Q-Q plots

Skewness Formula

S = E [(X−µ)3]
σ3

S > 1: Highly right-skewed
|S | < 0.5: Approximately normal

When to Transform:

Linear models assume normality

Improve model performance

Better visualization

0 5 10
0

0.2

0.4

Value

F
re
q
u
en
cy

Original vs Transformed

Original
Log-transformed

16 / 27

Dimensionality Reduction

Principal Component Analysis (PCA):

Linear transformation to uncorrelated components
Maximizes variance in lower dimensions
Useful for visualization and noise reduction

PCA Steps:

1 Standardize the data

2 Compute covariance matrix

3 Find eigenvalues/eigenvectors

4 Select principal components

5 Transform data

Variance Explained

Ratio = λi∑p
j=1 λj

Other Techniques:

t-SNE (non-linear)

UMAP (preserves structure)

Linear Discriminant Analysis

Independent Component Analysis

PC1

PC2

17 / 27

Feature Engineering Pipeline

Raw Data

Exploratory

Data Analysis

Data Cleaning

Missing Values

Feature

Selection

Feature

Creation

Feature

Transformation

Validation Testing

ML Model

18 / 27

Best Practices

Domain Knowledge:

Understand business context

Collaborate with domain experts

Research existing literature

Consider physical constraints

Data Understanding:

Explore data distributions

Identify missing patterns

Check for data leakage

Understand temporal aspects

Validation Strategy:

Use proper cross-validation

Avoid look-ahead bias

Test on holdout set

Monitor for overfitting

Iterative Approach:

Start simple, add complexity

Document all transformations

Version control features

A/B test feature changes

Golden Rule

Always validate features on unseen data before deploying to production!

19 / 27

Common Pitfalls and How to Avoid Them

Data Leakage:

Using future information

Target leakage

Wrong: Include post-event features

Right: Only use historical data

Overfitting Features:

Too many engineered features

Complex interactions on small data

Wrong: 1000 features, 100 samples

Right: Use regularization

Inconsistent Preprocessing:

Different train/test preprocessing

Data scaling after splitting

Wrong: Scale entire dataset

Right: Fit on train, transform test

Ignoring Feature Interactions:

Missing important combinations

Not considering non-linearity

Wrong: Only linear features

Right: Test interactions systematically

20 / 27

Case Study: Predicting House Prices

Dataset: House characteristics and sale prices
Original Features:

Size (sq ft)

Bedrooms, Bathrooms

Age of house

Neighborhood

Lot size

Feature Selection:

Remove highly correlated features

Use LASSO for automatic selection

Keep features with importance > 0.05

Engineered Features:

Size per bedroom ratio

Age categories (new/old)

Price per sq ft (for similar houses)

Distance to amenities

Seasonal indicators

Transformations:

Log(price) - target variable

StandardScaler for continuous

One-hot encode neighborhoods

Results

Baseline (raw features): RMSE = $45,000
After feature engineering: RMSE = $32,000 (29% improvement)

21 / 27

Case Study: Text Classification

Problem: Classify customer reviews as positive/negative
Text Preprocessing:

Lowercase conversion

Remove punctuation/numbers

Stop word removal

Stemming/Lemmatization

Feature Creation:

TF-IDF vectors

N-gram features (1-3)

Sentiment scores

Text length metrics

Advanced Features:

Word embeddings (Word2Vec)

Part-of-speech tags

Named entity counts

Readability scores

TF-IDF Sentiment Length N-grams

0.2
0.3
0.4

Im
p
or
ta
n
ce

Feature Importance

Performance

Bag of Words: Accuracy = 82%
Engineered Features: Accuracy = 89% (+7%)

22 / 27

Tools and Libraries

Python Libraries:

scikit-learn: Feature selection, scaling

pandas: Data manipulation

numpy: Mathematical operations

feature-engine: Specialized FE

category encoders: Categorical
encoding

Automated FE:

featuretools: Automated feature
generation

tsfresh: Time series features

boruta: Feature selection

R Libraries:

caret: Comprehensive ML toolkit

recipes: Feature engineering recipes

VIM: Missing value imputation

Specialized Tools:

H2O AutoML: Automated feature
engineering

DataRobot: Enterprise AutoML

RAPIDS: GPU-accelerated FE

Code Example
from sklearn.preprocessing import StandardScaler

scaler = StandardScaler()

X scaled = scaler.fit transform(X train)

23 / 27

Evaluation Metrics for Feature Engineering

Model Performance:

Cross-validation scores

Holdout test performance

Learning curves

Bias-variance analysis

Feature Quality:

Feature importance scores

Correlation with target

Stability across time

Business interpretability

Computational Metrics:

Training time

Inference speed

Memory usage

Storage requirements

0 20 40 60 80 100
0.7
0.8
0.9
1

Features

P
er
fo
rm

an
ce

Train
Validation

Feature Engineering Success Metrics

Good FE: Improves validation score, maintains interpretability
Overfitting: Train score increases, validation score decreases

24 / 27

Advanced Topics Preview

Automated Feature Engineering:

Deep Feature Synthesis

Genetic Programming

Neural Architecture Search

AutoML platforms

Deep Learning Features:

Learned embeddings

Representation learning

Transfer learning features

Attention mechanisms

Domain-Specific FE:

Image: HOG, SIFT, CNN features

Audio: MFCC, spectrograms

Time Series: Fourier transforms

Graph: Node embeddings

Real-time FE:

Streaming feature computation

Online learning features

Feature stores

Edge computing features

Future Directions

Feature engineering is evolving toward automated, domain-aware, and real-time systems

25 / 27

Summary

Key Takeaways:

Feature engineering is crucial for ML success

Combines domain knowledge with data science

Iterative process requiring validation

Balance complexity with interpretability

Remember:

Start simple, add complexity gradually

Always validate on unseen data

Document your feature engineering pipeline

Consider computational constraints

30
25

20 15
10

Domain Knowledge

Data Understanding

Technical Skills

Validation

Tools & Libraries

Success Formula

Next Steps

Practice with real datasets, experiment with different techniques, and always measure the
impact!

26 / 27

Questions & Discussion

®

Questions & Discussion

Think about:

What features might be important in your domain?

How would you handle missing values?

What transformations make sense for your data?

How would you validate your feature engineering?

sali85@student.gsu.edu

27 / 27

	Introduction to Feature Engineering
	Feature Selection
	Feature Creation
	Feature Transformation
	Best Practices and Examples

