Advanced Topics - Feature Engineering

Feature Selection, Creation, and Transformation Techniques

Sarwan Ali

Department of Computer Science
Georgia State University

S Crafting Better Features ¥

1/27

Today's Learning Journey

@ Introduction to Feature Engineering
© Feature Selection

© Feature Creation

@ Feature Transformation

© Best Practices and Examples

2/21

What is Feature Engineering?

Feature Engineering is the process of:

@ Selecting relevant features

o Creating new features from existing ones ‘ Raw Data ‘

@ Transforming features for better performance

Engineered
Features

!

| ML Model |

" Feature engineering is often the difference between a
good model and a great model”

3/27

Why Feature Engineering Matters

Impact on Model Performance:

@ Improves accuracy and generalization

@ Reduces overfitting “Cd 1
@ Speeds up training g '
@ Makes models more interpretable “‘% 0.8]
(o
Real-World Importance: Eé 0.6 | | o
= 0 2 4

@ 80% of ML project time
@ Domain expertise crucial

o Often more impactful than algorithm
choice

Feature Engineering Quality

4)27

Feature Selection Overview

Definition

Feature selection is the process of selecting a subset of relevant features for model
construction.

Benefits:
. Challenges:
@ Reduces overfitting . . .
o Curse of dimensionality
@ Improves accuracy i i
o o Feature interactions
@ Reduces training time))
o)) o Computational complexity
@ Simplifies model interpretation))
) @ Domain knowledge required
@ Reduces storage requirements

5/27

Types of Feature Selection

Feature Selec-
tion Methods

Embedded
Fil Meth Wrapper Methods
ilter Methods pp Methods
Correlation Statistical Tests LASSO Tree-based
Mutual Info Chi-square Ridge Feature Imp.
Forwa.rd RFE
Seieeii Genetic Al
Backward Elim. &

6/27

Filter Methods

Characteristics:
@ Independent of ML algorithm
@ Fast and scalable
@ Based on statistical properties

Correlation-based: . .
Statistical Tests:

@ Chi-square test
@ ANOVA F-test
@ t-test

@ Pearson correlation
@ Spearman correlation

@ Kendall's tau

Information-based: .
M i) Variance-based:
@ Mutual Intormation .
.) @ Variance threshold
@ Information Gain .
)) @ Quasi-constant features
@ Gain Ratio

Formula: Mutual Information

I(X; Y) = Yex Lyev P, ¥) log (2575

Wrapper Methods

Characteristics:
@ Use ML algorithm performance as criterion

@ More accurate but computationally expensive
o Risk of overfitting

Forward Selection: Recursive Feature Elimination (RFE):
O Start with empty set @ Train model with all features
@ Add best feature iteratively O Rank features by importance
@ Stop when no improvement © Remove least important

© Repeat until desired number
Backward Elimination:

@ Start with all features

@ Remove worst feature iteratively

Pros & Cons

Pros: Considers feature interactions
© Stop when performance degrades Cons: Computationally expensive

8/21

Embedded Methods

Characteristics:
o Feature selection integrated into model training
@ Balance between filter and wrapper methods

o Algorithm-specific

Tree-based Methods:

@ Random Forest feature importance

Regularization-based:
@ LASSO (L1 regularization)
e Ridge (L2 regularization)
o Elastic Net

o Gradient Boosting feature importance

@ Permutation importance

LASSO Objective Feature Importance
A g L 2 Based on how much each feature decreases
2n - X + A . . .
ming 24 1Y ol 161l . impurity when used for splits

9/27

Feature Creation Techniques

Definition

Feature creation involves generating new features from existing ones to capture hidden
patterns and relationships.

Feature
Creation

AR\

Polynomial €raction [Nnain—sm Temporal

Features Feature \ Features
= / \

Mathematical Encodin Aggregation
. & Text Features gereg
Transforms Categorical Features

10/27

Polynomial and Interaction Features

Interaction Features:

Polynomial Features: o Capture feature relationships
@ Capture non-linear relationships @ Products of feature pairs
@ Powers of existing features o Example: x1 X xo

3

o Example: x,x2, x3, ...

Mathematical Form

For features xi, xo: A
2 2
{17X17X27X1’X1X2a X3, }

Example: House Prices

Original: size, bedrooms
Polynomial: size?, bedrooms
Interaction: size x bedrooms

2

T1/27

Mathematical Transformations

3 *1

Log Transformations:
@ Handle skewed distributions
@ log(x + 1) for zero values

@ Makes data more normal

— log(x)

Square Root:
@ Moderate skewness reduction
@ xorx+Fc

@ Preserves zero values

Transformed Values

Reciprocal:
@ 1/x transformation 0 T ; ; ; |
2 4 6 8 10

@ Changes scale dramatically
@ Careful with zero values Original Values

Box-Cox Transformation

{X*;l if A0

YO =\ log(x) ifA=o0

Encoding Categorical Variables

One-Hot Encoding:

@ Binary columns for each category

Green

I3
©

Color Red B

@ Suitable for nominal data 1 5 5
Blue 0 1 0

@ Can create many columns Green | 0 0 1
Blue 0 1 0

Label Encoding: Table: One-Hot Encoding

@ Integer mapping of categories

@ Suitable for ordinal data Advanced Techniques:

@ Implies ordering o Binary encoding

Target Encoding: o Frequency encoding

o Mean target value per category © Hash encoding

o Risk of overfitting e Embedding (for deep learning)
@ Useful for high cardinality

13/27

Temporal Feature Engineering

Time-based Features:
@ Hour, day, month, year Lag Features:
o Day of week, weekend indicator o Previous time period values
o Season, quarter @ Moving averages
@ Rolling statistics

@ Business hours indicator
Date Differences:

Cyclical Encoding:
@ Days since last event

@ Sine/cosine transformations
@ Preserve cyclical nature @ Time to next holiday
o Example: hour of day o Age calculations
1 .
v —sin
. . 3
Cyclical Encoding 3 0?< —cos
1k i
sin (2Zfiour) 0 10 20
Hour
14 /27

27r-hour)

cos (224

Feature Scaling and Normalization

Why Scale Features?

Different features have different scales, which can bias algorithms that use distance measures.

Min-Max Scaling;: Standardization (Z-score):

@ Scales to [0,1] range @ Mean=0,Std =1

@ Preserves relationships @ Assumes normal distribution

@ Sensitive to outliers

@ Not bounded to specific range

Xscaled = X;:—%, Xstd = %
Robust Scaling: Unit Vector Scaling:
@ Uses median & IQR, Less sensitive to outliers @ Scales to unit norm, Useful for text data
Formula Formula
Xrobust = 2 raenCd Xunit = [T

15/27

Handling Skewed Distributions

Identifying Skewness:
@ Skewness coefficient
@ Visual inspection (histograms)

° Q-Q plots Original vs Transformed
Skewness Formula _ —— Original
S — El(X=m)’] % 04T | | — Log-transformed

= =7 5

. . 0.2+ 1
S > 1: Highly right-skewed g
|S| < 0.5: Approximately normal 0L ‘ B
0 5 10

When to Transform:
@ Linear models assume normality
@ Improve model performance

@ Better visualization 16/ 27

Dimensionality Reduction

Principal Component Analysis (PCA):
@ Linear transformation to uncorrelated components
@ Maximizes variance in lower dimensions
@ Useful for visualization and noise reduction

PCA Steps: Other Techniques:
© Standardize the data o t-SNE (non-linear)
@ Compute covariance matrix o UMAP (preserves structure)
@ Find eigenvalues/eigenvectors o Linear Discriminant Analysis
@ Select principal components @ Independent Component Analysis
© Transform data PC2
Variance Explained
Ratio = =
i PC1

17/27

Feature Engineering Pipeline

Raw Data

Exploratory

Data Analysis

|

Data Cleaning

Missing Values

/l\

Feature Feature Feature

Selectidn Creation Transformation
1

—————— Validation Testing

ML Model

1827

Best Practices

Domain Knowledge: Validation Strategy:
@ Understand business context @ Use proper cross-validation
@ Collaborate with domain experts @ Avoid look-ahead bias
@ Research existing literature @ Test on holdout set
o Consider physical constraints @ Monitor for overfitting
Data Understanding: Iterative Approach:
@ Explore data distributions @ Start simple, add complexity
o |dentify missing patterns @ Document all transformations
o Check for data leakage @ Version control features
@ Understand temporal aspects o A/B test feature changes

Golden Rule
Always validate features on unseen data before deploying to production!

19/27

Common Pitfalls and How to Avoid Them

Data Leakage: Inconsistent Preprocessing;:

@ Using future information o Different train/test preprocessing

o Target leakage @ Data scaling after splitting

@ Wrong: Include post-event features @ Wrong: Scale entire dataset

@ Right: Only use historical data @ Right: Fit on train, transform test
Overfitting Features: Ignoring Feature Interactions:

@ Too many engineered features @ Missing important combinations

o Complex interactions on small data @ Not considering non-linearity

@ Wrong: 1000 features, 100 samples @ Wrong: Only linear features

@ Right: Use regularization o Right: Test interactions systematically

20/27

Case Study: Predicting House Prices

Dataset: House characteristics and sale prices

Original Features: Engineered Features:
o Size (sq ft) @ Size per bedroom ratio
@ Bedrooms, Bathrooms @ Age categories (new/old)
@ Age of house @ Price per sq ft (for similar houses)
@ Neighborhood @ Distance to amenities
@ Lot size @ Seasonal indicators
Feature Selection: Transformations:
@ Remove highly correlated features @ Log(price) - target variable
@ Use LASSO for automatic selection @ StandardScaler for continuous
@ Keep features with importance > 0.05 @ One-hot encode neighborhoods

Baseline (raw features): RMSE = $45,000
After feature engineering: RMSE = $32,000 (29% improvement)

21/27

Case Study: Text Classification

Problem: Classify customer reviews as positive/negative

Text Preprocessing: Advanced Features:
@ Lowercase conversion @ Word embeddings (Word2Vec)
@ Remove punctuation/numbers @ Part-of-speech tags
@ Stop word removal @ Named entity counts
@ Stemming/Lemmatization @ Readability scores
Feature Creation: Feature Importance

@ TF-IDF vectors
@ N-gram features (1-3)

Importance
[N Ne]

NwWH
]
]

[—

TF-IDF Sentiment Length N-grams

@ Sentiment scores

@ Text length metrics

Performance

Bag of Words: Accuracy = 82%
Engineered Features: Accuracy = 89% (+7%)

22/27

Tools and Libraries

Python Libraries:

o scikit-learn: Feature selection, scaling

@ pandas: Data manipulation
o numpy: Mathematical operations
o feature-engine: Specialized FE

@ category_encoders: Categorical
encoding

Automated FE:

@ featuretools: Automated feature
generation

o tsfresh: Time series features

@ boruta: Feature selection

R Libraries:
o caret: Comprehensive ML toolkit
@ recipes: Feature engineering recipes

@ VIM: Missing value imputation

Specialized Tools:
@ H20 AutoML: Automated feature
engineering
@ DataRobot: Enterprise AutoML
@ RAPIDS: GPU-accelerated FE

Code Example

from sklearn.preprocessing import StandardScaler
scaler = StandardScaler()
X_scaled = scaler.fit_transform(X_train)

= . = = = yerT

Evaluation Metrics for Feature Engineering

Model Performance: Computational Metrics:
o Cross-validation scores e Training time
@ Holdout test performance @ Inference speed
@ Learning curves e Memory usage
e Bias-variance analysis @ Storage requirements
Feature Quality: 8 1
. @ | | |—— Train
@ Feature importance scores e 09 e
. : 5 08| | |--- Validation
o Correlation with target < 0- s
- . v 0.7
@ Stability across time a 0 20 40 60 80 100
o Business interpretability # Features

Feature Engineering Success Metrics

Good FE: Improves validation score, maintains interpretability
Overfitting: Train score increases, validation score decreases

4727

Advanced Topics Preview

Automated Feature Engineering: Domain-Specific FE:
@ Image: HOG, SIFT, CNN features

@ Audio: MFCC, spectrograms
@ Time Series: Fourier transforms

@ Graph: Node embeddings

@ Deep Feature Synthesis
o Genetic Programming
@ Neural Architecture Search

@ AutoML platforms

Real-time FE:

@ Streaming feature computation

Deep Learning Features:

o Learned embeddings

@ Representation learning @ Online learning features

@ Transfer learning features o Feature stores

@ Attention mechanisms o Edge computing features

Future Directions
Feature engineering is evolving toward automated, domain-aware, and real-time systems

i) = — = = SN

Summary

Key Takeaways:

@ Feature engineering is crucial for ML success
B Domain Knowledge

@ Data Understanding

@ Balance complexity with interpretability [Technical Skills

Remember: [Validation
- . @ Tools & Libraries
@ Start simple, add complexity gradually

@ Always validate on unseen data

@ Combines domain knowledge with data science

@ lterative process requiring validation

o Success Formula
@ Document your feature engineering pipeline

@ Consider computational constraints

Practice with real datasets, experiment with different techniques, and always measure the
impact!

26 /27

Questions & Discussion

Questions & Discussion

Think about:
@ What features might be important in your domain?
@ How would you handle missing values?
@ What transformations make sense for your data?
@ How would you validate your feature engineering?
¥ sali85@student.gsu.edu

27 /27

	Introduction to Feature Engineering
	Feature Selection
	Feature Creation
	Feature Transformation
	Best Practices and Examples

