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What is Time Series Data?

Definition

A time series is a sequence of data points indexed in temporal order, typically collected at
successive, equally spaced points in time.

Examples:

Stock prices over time

Weather measurements

Sales data by month

Website traffic counts

Sensor readings
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Time Series vs Cross-Sectional Data

Time Series Data

Observations over time

Temporal dependencies

Order matters

Autocorrelation present

Example: Daily temperature readings

T1,T2,T3, . . . ,Tn (1)

Cross-Sectional Data

Observations at one point in time

Independent observations

Order doesn’t matter

No temporal structure

Example: Heights of students in a class

H1,H2,H3, . . . ,Hn (2)
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Decomposition of Time Series

A time series can be decomposed into several components:

Additive Model

Yt = Tt + St + Ct + It (3)

Multiplicative Model

Yt = Tt × St × Ct × It (4)

Where:

Tt = Trend component

St = Seasonal component

Ct = Cyclical component

It = Irregular (random) component
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Trend Component

Trend

The long-term movement or direction in the data over
time.

Types of Trends:

Upward trend: Increasing over time

Downward trend: Decreasing over time

No trend: Stationary around a mean

Mathematical representation:

Tt = α+ βt + γt2 + . . . (5)
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Seasonal Component

Seasonality

Regular, predictable patterns that repeat over fixed
periods (e.g., daily, weekly, monthly, yearly).

Examples:

Ice cream sales peak in summer

Electricity usage patterns

Holiday shopping spikes

Weekly website traffic patterns

Mathematical representation:

St =
s∑

i=1

γiDi ,t (6)

where Di ,t are seasonal dummy variables.

0 5 10

2

4

6

8

Time

V
al
u
e

Seasonal pattern repeating every 12 time

units

7 / 30



Cyclical vs Seasonal Components

Seasonal

Fixed period (e.g., 12 months)

Predictable timing

Same pattern each cycle

Caused by calendar events

Example: Retail sales during Christmas
season

Cyclical

Variable period (2-10+ years)

Unpredictable timing

Varying amplitude

Economic/business cycles

Example: Economic recession cycles
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Methods for Trend Analysis

1. Visual Inspection

Plot the data and observe the general direction over time.

2. Moving Averages

MAt =
1
k

∑k−1
i=0 Yt−i → Smooths out short-term fluctuations to reveal underlying trend.

3. Linear Regression

Yt = α+ βt + ϵt → Fits a straight line through the data points.

4. Polynomial Regression

Yt = α+ β1t + β2t
2 + . . .+ βkt

k + ϵt (7)

Captures non-linear trends.
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Moving Averages - Example

Simple Moving Average (SMA):

SMAt =
Yt + Yt−1 + . . .+ Yt−n+1

n
(8)

Weighted Moving Average (WMA):

WMAt =

∑n−1
i=0 wiYt−i∑n−1

i=0 wi

(9)

Exponential Moving Average (EMA):

EMAt = αYt + (1− α)EMAt−1 (10)
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Trend Detection Methods

1. Mann-Kendall Test

Non-parametric test for monotonic trend detection.

S =
n−1∑
i=1

n∑
j=i+1

sign(Yj − Yi ) (11)

2. Linear Regression Significance

Test if the slope coefficient β is significantly different from zero.

H0 : β = 0 vs H1 : β ̸= 0 (12)

3. Augmented Dickey-Fuller Test

Tests for unit roots (non-stationarity): ∆Yt = α+ βt + γYt−1 +
∑p

i=1 δi∆Yt−i + ϵt
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Detecting Seasonality

1. Seasonal Plots

Plot data by season/period to visualize recurring patterns.

2. Autocorrelation Function (ACF)

Measures correlation between observations at different lags.

ρk =

∑n
t=k+1(Yt − Ȳ )(Yt−k − Ȳ )∑n

t=1(Yt − Ȳ )2
(13)

3. Periodogram

Identifies dominant frequencies in the data: I (ω) = 1
n

∣∣∑n
t=1 Yte

−iωt
∣∣2

4. Seasonal Decomposition

Separates seasonal component from trend and noise.
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Seasonal Decomposition Methods

1. Classical Decomposition

Step 1: Estimate trend using moving averages
Step 2: Remove trend to get detrended series
Step 3: Estimate seasonal component
Step 4: Calculate residuals

2. X-13ARIMA-SEATS

Advanced method used by statistical agencies for seasonal adjustment.

3. STL Decomposition

Seasonal and Trend decomposition using Loess smoothing.

Handles any type of seasonality

Robust to outliers

Allows seasonal component to change over time
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Handling Seasonality

1. Seasonal Differencing

∇sYt = Yt − Yt−s , where s is the seasonal period.

2. Seasonal Dummy Variables

Yt = α+
∑s−1

i=1 βiDi ,t + ϵt , where Di ,t are seasonal
dummies.

3. Fourier Terms

Yt = α+
K∑

k=1

[
βk cos

(
2πkt

s

)
+ γk sin

(
2πkt

s

)]
+ ϵt

(14)

Example: Monthly Data
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Forecasting Overview

Definition

Forecasting is the process of predicting future values based on historical data and identified
patterns.

Key Principles:

Use all available information

Forecasts are uncertain

Accuracy decreases with horizon

Simple methods often work well

Forecast Horizon:

Short-term: 1-30 days

Medium-term: 1-12 months

Long-term: 1+ years

Notation

Let Ŷt+h|t denote the forecast of Yt+h made at time t, where h is the forecast horizon.
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Simple Forecasting Methods

1. Naive Method

Ŷt+h|t = Yt , → Use the last observed value as the forecast.

2. Seasonal Naive Method

Ŷt+h|t = Yt+h−s , → Use the value from the same season in the previous year.

3. Simple Mean Method

Ŷt+h|t =
1
t

∑t
i=1 Yi , → Use the average of all historical values.

4. Drift Method

Ŷt+h|t = Yt + h · Yt−Y1
t−1 , → Extrapolate the trend from first to last observation.
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Exponential Smoothing

Simple Exponential Smoothing

Ŷt+1|t = αYt + (1− α)Ŷt|t−1 (15)

= αYt + α(1− α)Yt−1 + α(1− α)2Yt−2 + . . . (16)

where 0 < α < 1 is the smoothing parameter.

Properties:

Weighted average of past observations

Weights decrease exponentially

Recent observations get higher weights

Only one parameter to estimate

Choosing α:

High α (≈ 0.8): Fast adaptation

Low α (≈ 0.2): Smooth forecasts
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Holt’s Linear Trend Method

Holt’s Method (Double Exponential Smoothing)

Extends simple exponential smoothing to handle trend.

ℓt = αYt + (1− α)(ℓt−1 + bt−1) (17)

bt = β(ℓt − ℓt−1) + (1− β)bt−1 (18)

Ŷt+h|t = ℓt + h · bt (19)

where:

ℓt is the level (smoothed value)

bt is the trend (slope)

α is the level smoothing parameter

β is the trend smoothing parameter

Key Advantage: Can forecast multiple steps ahead with linear trend extrapolation.
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Holt-Winters Seasonal Method

Holt-Winters Method (Triple Exponential Smoothing), Handles level, trend, and seasonality.

Additive Seasonality:

ℓt = α(Yt − st−m) + (1− α)(ℓt−1 + bt−1) (20)

bt = β(ℓt − ℓt−1) + (1− β)bt−1 (21)

st = γ(Yt − ℓt−1 − bt−1) + (1− γ)st−m (22)

Ŷt+h|t = ℓt + h · bt + st+h−m (23)

Multiplicative Seasonality:

ℓt = α
Yt

st−m
+ (1− α)(ℓt−1 + bt−1) (24)

st = γ
Yt

ℓt−1 + bt−1
+ (1− γ)st−m (25)

Ŷt+h|t = (ℓt + h · bt) · st+h−m (26)
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Forecast Accuracy Measures

Let et = Yt − Ŷt be the forecast error.

Scale-Dependent Measures

MAE = 1
n

∑n
t=1 |et |,RMSE =

√
1
n

∑n
t=1 e

2
t

Percentage Measures

MAPE = 100
n

∑n
t=1

∣∣∣ etYt

∣∣∣ , sMAPE = 100
n

∑n
t=1

|et |
(|Yt |+|Ŷt |)/2

Scale-Free Measures

MASE = MAE
1

n−1

∑n
t=2 |Yt−Yt−1|
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Cross-Validation for Time Series

Time Series Cross-Validation

Unlike regular cross-validation, maintains temporal order.

Fold 1:

Fold 2:

Fold 3:

Fold 4:

Fold 5:

Training Set Test Set

Time

Key Points:
Always use past data to predict future
Test set size can be fixed or growing
Provides more robust performance estimates
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Residual Analysis

Good forecasts should have residuals that are:

Uncorrelated (no pattern)

Zero mean

Constant variance (homoscedastic)

Normally distributed

Ljung-Box Test

Tests for autocorrelation in residuals:

QLB = n(n + 2)
h∑

k=1

ρ̂2
k

n − k
(27)

where ρ̂k is the sample autocorrelation at lag k .
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Implementation Steps

1. Data Preparation

Check for missing values and outliers, Ensure regular time intervals

Handle irregular observations, Transform data if necessary (log, square root)

2. Exploratory Data Analysis

Plot the time series, Identify trend, seasonality, and cycles

Check for structural breaks, Analyze autocorrelation patterns

3. Model Selection and Fitting

Choose appropriate forecasting method, Estimate model parameters

Check model assumptions, Validate on holdout data
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Python Implementation Example

import pandas as pd
import numpy as np
import m a t p l o t l i b . p y p l o t as p l t
from s t a t s m o d e l s . t s a . h o l t w i n t e r s import E x p o n e n t i a l S m o o t h i n g
from s t a t s m o d e l s . t s a . s e a s o n a l import s e a s o n a l d e c o m p o s e
from s k l e a r n . m e t r i c s import m e a n a b s o l u t e e r r o r , m e a n s q u a r e d e r r o r
# Load and p r epa r e data
d f = pd . r e a d c s v ( ’ s a l e s d a t a . c s v ’ )
d f [ ’ d a t e ’ ] = pd . t o d a t e t i m e ( d f [ ’ d a t e ’ ] )
d f . s e t i n d e x ( ’ d a t e ’ , i n p l a c e=True )
t s = d f [ ’ s a l e s ’ ]
f i g , a x e s = p l t . s u b p l o t s ( 2 , 2 , f i g s i z e =(12 , 8 ) ) # Exp l o r a t o r y a n a l y s i s
t s . p l o t ( ax=a x e s [ 0 , 0 ] , t i t l e = ’ O r i g i n a l  Time  S e r i e s ’ )
# Seasona l d ecompos i t i on
d e c o m p o s i t i o n = s e a s o n a l d e c o m p o s e ( ts , model= ’ a d d i t i v e ’ , p e r i o d =12)
d e c o m p o s i t i o n . t r e n d . p l o t ( ax=a x e s [ 0 , 1 ] , t i t l e = ’ Trend ’ )
d e c o m p o s i t i o n . s e a s o n a l . p l o t ( ax=a x e s [ 1 , 0 ] , t i t l e = ’ S e a s o n a l ’ )
d e c o m p o s i t i o n . r e s i d . p l o t ( ax=a x e s [ 1 , 1 ] , t i t l e = ’ R e s i d u a l s ’ )
# Holt−Winte r s f o r e c a s t i n g
model = E x p o n e n t i a l S m o o t h i n g ( ts , t r e n d= ’ add ’ , s e a s o n a l= ’ add ’ , s e a s o n a l p e r i o d s =12)
f i t t e d m o d e l = model . f i t ( )
f o r e c a s t = f i t t e d m o d e l . f o r e c a s t ( s t e p s =12) # Genera te f o r e c a s t s
f o r e c a s t c i = f i t t e d m o d e l . g e t p r e d i c t i o n ( s t a r t =−24). c o n f i n t ( )
t r a i n s i z e = i n t ( l e n ( t s ) ∗ 0 . 8 ) # Eva l ua t e accu racy
t r a i n , t e s t = t s [ : t r a i n s i z e ] , t s [ t r a i n s i z e : ]
m o d e l e v a l = E x p o n e n t i a l S m o o t h i n g ( t r a i n , t r e n d= ’ add ’ , s e a s o n a l= ’ add ’ , s e a s o n a l p e r i o d s =12). f i t ( )
p r e d i c t i o n s = m o d e l e v a l . f o r e c a s t ( s t e p s=l e n ( t e s t ) )
mae = m e a n a b s o l u t e e r r o r ( t e s t , p r e d i c t i o n s )
rmse = np . s q r t ( m e a n s q u a r e d e r r o r ( t e s t , p r e d i c t i o n s ) )
p r i n t ( f ”MAE:  {mae : . 2 f } ,  RMSE:  {rmse : . 2 f}” )
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Common Pitfalls and Best Practices

Common Pitfalls

Ignoring data quality issues

Overfitting to historical data

Not accounting for structural breaks

Using inappropriate accuracy measures

Forecasting too far into the future

Not updating models regularly

Best Practices

Start with simple methods

Use multiple forecasting methods

Combine forecasts when possible

Regularly monitor and update models

Provide prediction intervals

Document assumptions and limitations

Model Selection Guidelines

No trend, no seasonality: Simple exponential smoothing

Trend, no seasonality: Holt’s method

Trend and seasonality: Holt-Winters method

Complex patterns: Consider ARIMA or machine learning methods
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Beyond Basic Methods

ARIMA Models

Autoregressive Integrated Moving
Average

Handles non-stationary data

Box-Jenkins methodology

Seasonal ARIMA (SARIMA)

State Space Models

Kalman filtering

Dynamic linear models

Structural time series models

Unobserved components

Machine Learning

Neural networks (LSTM, GRU)

Support Vector Regression

Random Forest for time series

Deep learning approaches

Multivariate Methods

Vector Autoregression (VAR)

Cointegration analysis

Dynamic factor models

Cross-correlation analysis
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Real-World Applications

Business Applications:

Demand forecasting

Inventory management

Financial planning

Revenue prediction

Customer behavior analysis

Finance:

Stock price prediction

Risk management

Portfolio optimization

Volatility modeling

Algorithmic trading

Science & Engineering:

Climate modeling

Quality control

Sensor data analysis

Energy consumption

Medical monitoring

Technology:

Web traffic analysis

System performance monitoring

User engagement metrics

A/B testing analysis

Capacity planning
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Key Takeaways

1. Understanding Time Series Components

Trend: Long-term direction

Seasonality: Regular, predictable patterns

Cyclical: Irregular, longer-term fluctuations

Irregular: Random variation

2. Forecasting Methods

Simple methods: Naive, seasonal naive, drift

Exponential smoothing: Simple, Holt’s, Holt-Winters

Choose method based on data characteristics

3. Evaluation and Validation
Use appropriate accuracy measures, Apply time series cross-validation

Analyze residuals for model adequacy, Consider forecast intervals and uncertainty
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Next Steps

Recommended Learning Path:

1 Master basic decomposition methods

2 Practice with real datasets

3 Learn ARIMA modeling

4 Explore multivariate methods

5 Study advanced ML techniques

Useful Resources:

”Forecasting: Principles and Practice” by
Hyndman & Athanasopoulos

Python: statsmodels, scikit-learn

R: forecast, tseries packages

Practice Exercises:

Download economic data (FRED)

Analyze retail sales data

Forecast stock prices

Model weather patterns

Predict website traffic

Key Skills to Develop:

Data visualization

Statistical testing

Model selection

Performance evaluation

Business interpretation
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Questions & Discussion

®

Questions & Discussion

# sali85@student.gsu.edu

⋆ Thank you for your attention! ⋆
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