Introduction to Machine Learning Georgia State University


Sarwan Ali

Department of Computer Science Georgia State University

Welcome to the Future of Computing (c)

Today's Journey

- What is Machine Learning?
- Types of Machine Learning
- Real-World Applications
- Why Learn Machine Learning?

Let's Start with a Question

How did your phone know to suggest this route to avoid traffic this morning?

Let's Start with a Question

How did your phone know to suggest this route to avoid traffic this morning?

Machine Learning!

What is Machine Learning?

Arthur Samuel (1959)

"Machine Learning is the field of study that gives computers the ability to learn without being explicitly programmed."

What is Machine Learning?

Arthur Samuel (1959)

"Machine Learning is the field of study that gives computers the ability to learn without being explicitly programmed."

Tom Mitchell (1997) - More Precise

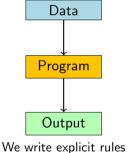
"A computer program is said to learn from experience E with respect to some class of tasks T and performance measure P, if its performance at tasks in T, as measured by P, improves with experience E."

What is Machine Learning?

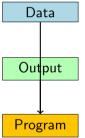
Arthur Samuel (1959)

"Machine Learning is the field of study that gives computers the ability to learn without being explicitly programmed."

Tom Mitchell (1997) - More Precise


"A computer program is said to learn from experience E with respect to some class of tasks T and performance measure P, if its performance at tasks in T, as measured by P, improves with experience E."

In Simple Terms


Machine Learning = Finding patterns in data to make predictions or decisions

Traditional Programming vs. Machine Learning

Traditional Programming

Machine Learning

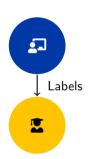
Algorithm learns the rules

Three Main Types of Machine Learning

Supervised Learning

Unsupervised Learning Q Reinforcement Learning

Has labeled examples Finds hidden patterns Learns through interaction


Supervised Learning: Learning with a Teacher

Key Characteristics:

- Has labeled training data
- Goal: Predict labels for new data
- Like learning with answer sheets

Two Main Types:

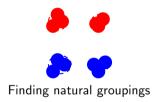
- Classification: Predict categories
- Regression: Predict continuous values

Supervised Learning Examples

Application	Input	Output
Email Spam Detection	Email content	Spam/Not Spam
Medical Diagnosis	Symptoms, tests	Disease/Healthy
Image Recognition	Image pixels	Cat/Dog/Bird
Stock Price	Historical data	Future price
Credit Scoring	Financial history	Approve/Deny

Interactive Question

Which of these are classification vs. regression problems?


Unsupervised Learning: Finding Hidden Patterns

Key Characteristics:

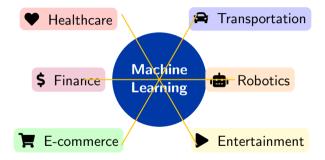
- No labeled data
- Goal: Discover hidden structure
- Like exploring without a map

Common Tasks:

- Clustering: Group similar items
- Association: Find relationships
- Dimensionality Reduction: Simplify data

Reinforcement Learning: Learning Through Trial and Error

Key Characteristics:


- Agent interacts with environment
- Gets rewards/penalties for actions
- Goal: Maximize long-term reward
- Like training a pet with treats

Famous Examples:

- AlphaGo beating world champions
- Autonomous vehicles
- Game AI (Atari, StarCraft)
- Robot control

Machine Learning is Everywhere!

Healthcare: Saving Lives with Data

- Medical Applications:
 - Medical Imaging: X-ray, MRI, CT scan analysis
 - Drug Discovery: Finding new medications faster
 - Personalized Treatment: Tailored therapy plans
 - Early Diagnosis: Detecting diseases early
 - **Epidemic Prediction**: COVID-19 spread modeling

Success Story

Google's DeepMind detected over 50 eye diseases from retinal scans with 94% accuracy - matching world-leading experts!

Impact: Faster diagnosis, better outcomes, reduced costs

Technology: The Digital Revolution

(#) Web & Social Media:

- Search engines (Google)
- Recommendation systems (Netflix, Spotify)
- Social media feeds (Facebook, Instagram)
- Content moderation

ᆋ Natural Language:

- Virtual assistants (Siri, Alexa)
- Language translation (Google Translate)
- Chatbots and customer service

- Sentiment analysis
- Computer Vision:
 - Face recognition
 - Object detection
 - Autonomous vehicles
 - Quality control in manufacturing

Gaming & Entertainment:

- Game AI opponents
- Procedural content generation
- Movie/music recommendations
- Content creation tools

Business: Driving Innovation and Profit

Industry	Application	Impact
\$ Finance	Fraud detection, algorithmic trading	\$Billions saved
📜 Retail	Demand forecasting, price optimization	15-20% profit increase
B Logistics	Route optimization, inventory management	30% cost reduction
Manufacturing	Predictive maintenance, quality control	25% downtime reduction
👖 Real Estate	Price prediction, market analysis	Better investment decisions

Question for Discussion

What business applications of ML have you personally experienced today?

Why Should YOU Learn Machine Learning?

Career Opportunities:

- Data Scientist (\$120k+ average)
- ML Engineer (\$130k+ average)
- Al Research Scientist
- Product Manager (AI/ML)
- Software Engineer (ML focus)

Industry Demand:

- 22% job growth (much faster than average)
- Every industry needs ML talent
- Remote work opportunities

Intellectual Growth:

- Problem-solving skills
- Statistical thinking
- Interdisciplinary knowledge
- Future-ready mindset

Societal Impact:

- Solve global challenges
- Improve quality of life
- Drive innovation
- Shape the future

What You'll Learn in This Course

Foundation: Math, Statistics, Programming

Supervised Learning: Classification & Regression

Unsupervised Learning: Clustering & Patterns

Advanced Topics: Deep Learning & Ethics

Hands-on Projects: Real datasets, Real problems, Real solutions

Quick Poll

Raise your hand if you have...

- 🖐 Used Netflix recommendations
- Asked Siri or Alexa a question
- 🖐 Used Google Translate
- Seen your photos automatically tagged on social media
- 🤚 Used navigation apps like Google Maps

Busting ML Myths

X Common Myths:

- "You need a PhD in math"
- "It's only for tech companies"
- "Al will replace all jobs"
- "You need massive datasets"
- "It's too complex to learn"

Reality:

- High school math is often enough
- Every industry uses ML
- Al augments human capabilities
- Small data can be powerful too
- Start simple, build complexity

Key Message

Machine Learning is accessible, practical, and incredibly powerful when learned systematically!

Key Takeaways

? Today's Key Points:

- ML Definition: Algorithms that learn patterns from data to make predictions
- Three Types: Supervised (with labels), Unsupervised (find patterns), Reinforcement (learn through interaction)
- Everywhere: Healthcare, technology, business, entertainment ML is transforming every field
- Career Gold: High demand, great salaries, meaningful work
- Accessible: You don't need to be a math genius to get started!

Next Class Preview

We'll dive into the mathematical foundations and set up our programming environment. Come ready to code!

Questions & Discussion

Let's talk about ML!

Email: [sali85@student.gsu.edu]

Course Website:

[https://sarwanpasha.github.io/Courses/int_ml.html]