
Mathematical Prerequisites for Machine Learning
Linear Algebra, Probability & Statistics, Calculus

Sarwan Ali

Department of Computer Science
Georgia State University

y The Mathematical Foundation of Intelligence y

1 / 27



Today’s Mathematical Journey

1 Linear Algebra: The Language of Data

2 Probability & Statistics: Handling Uncertainty

3 Calculus: The Mathematics of Change

4 Putting It All Together: ML Applications

5 Practical Tips & Next Steps

2 / 27



Why Does Math Matter for Machine Learning?

Think of ML as a Recipe

» Traditional Cooking:

Follow instructions step by step

Measure ingredients

Apply heat and time

Get consistent results

Æ Machine Learning:

Linear Algebra: Organize ingredients
(data)

Probability: Handle uncertainty in cooking

Calculus: Optimize the recipe
automatically

Get intelligent results!

Key Point

Math gives us the language to describe and solve learning problems systematically!

3 / 27



Linear Algebra: Why It’s Everywhere in ML

Data is just numbers organized in arrays!

Real-world data as vectors/matrices:

Images: Pixel intensity arrays

Text: Word frequency vectors

Audio: Wave amplitude sequences

Customer data: Feature vectors

Example: House Price Prediction

House =


2000
3
2

1995


(sq ft, bedrooms, bathrooms, year built)

Bottom Line

Linear algebra lets us manipulate ALL this data efficiently with simple operations!

4 / 27



Vectors: The Building Blocks

What is a Vector?

A list of numbers

Represents a point in space

Or a direction and magnitude

Notation:

v =


v1
v2
...
vn


Example:

student =


85
92
78
88


(Math, Science, English, History grades)

x1

x2
v =

[
3
2

]

Vector Operations:

Addition: a+ b

Scalar multiplication: ca

Dot product: a · b

5 / 27



Essential Vector Operations

1. Dot Product (Inner Product):

a · b =
n∑

i=1

aibi = a1b1 + a2b2 + · · ·+ anbn

Geometric meaning: Measures similarity/correlation

2. Vector Norm (Length):

∥v∥ =
√
v · v =

√
v21 + v22 + · · ·+ v2n

3. Unit Vector:
v̂ =

v

∥v∥

ML Connection

Similarity in Recommendations:

User A:


5
3
1
4

 (movie ratings)

User B:


4
3
2
5


Similarity = A·B

∥A∥∥B∥
Higher similarity → Better
recommendations!

6 / 27



Matrices: Collections of Vectors

What is a Matrix?

2D array of numbers

Collection of vectors

Represents datasets or transformations

Notation:

A =


a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
. . .

...
am1 am2 · · · amn


Size: m × n (rows × columns)

Dataset Example

Student grades matrix:

Grades =


85 92 78
90 88 95
76 84 82
88 91 89


Rows = Students

Columns = Subjects

Each row is a student vector

Each column is a subject vector

7 / 27



Matrix Operations That Power ML (Alternative)

1. Matrix Multiplication: AB = C

A2×2 =

[
a11 a12
a21 a22

]
B2×2 =

[
b11 b12
b21 b22

]
= C2×2 =

[
c11 c12
c21 c22

]
Where: cij =

∑
k aikbkj

2. Matrix Transpose: AT (flip rows and columns)
3. Matrix Inverse: A−1 (undoes the transformation)

ML Application

Linear regression: w = (XTX)−1XTy (finds best fit line!)

8 / 27



Eigenvalues & Eigenvectors: Finding Special Directions

The Big Idea: Some vectors don’t change direction
when transformed by a matrix!

Av = λv

v: eigenvector (special direction)

λ: eigenvalue (scaling factor)

Why Care?

Reveals the ”natural” directions in data

Used in dimensionality reduction (PCA)

Helps understand data structure

Critical for many ML algorithms

v

Av = 2v

Same direction, different length!

PCA Example

Find directions of maximum variance
in data to reduce dimensions while
preserving information.

9 / 27



Probability: The Science of Uncertainty

Real world is messy and uncertain!

Why Probability in ML?

Data has noise and errors

Predictions are uncertain

Models make assumptions

Need to quantify confidence

Examples:

”70% chance of rain”

”95% confidence interval”

”Spam probability: 0.85”

? ?

Probability Distribution

Key Insight

ML algorithms learn probability distributions
from data to make informed predictions!

10 / 27



Probability Basics

Probability Rules:

0 ≤ P(A) ≤ 1 (probabilities are between 0 and 1)
P(certain event) = 1
P(impossible event) = 0
P(A or B) = P(A) + P(B)− P(A and B)

Conditional Probability:

P(A|B) = P(A and B)

P(B)

”Probability of A given B has occurred”
Bayes’ Theorem:

P(A|B) = P(B|A)P(A)
P(B)

Spam Detection

P(spam|”free money”) = ?

Given email contains ”free money”, what’s
probability it’s spam?

Use Bayes’ theorem with training data!

P(spam|words) = P(words|spam)P(spam)

P(words)

11 / 27



Important Probability Distributions

1. Normal (Gaussian) Distribution:

f (x) =
1√
2πσ2

e−
(x−µ)2

2σ2

Bell-shaped curve

Characterized by mean µ and variance σ2

Central Limit Theorem

Used everywhere in ML!

2. Bernoulli Distribution:

Binary outcomes (0 or 1)

Probability p of success

Models coin flips, binary classification

−2 2

0.1

0.2

0.3

x

f (x)

Normal Distribution

ML Applications

Normal: Linear regression errors, feature
distributions

Bernoulli: Logistic regression, binary
classification

12 / 27



Statistics: Making Sense of Data

Descriptive Statistics:

Mean: x̄ = 1
n

∑n
i=1 xi

Median: Middle value when sorted

Mode: Most frequent value

Variance: σ2 = 1
n

∑n
i=1(xi − x̄)2

Standard Deviation: σ =
√
σ2

Why Important?

Understand your data first!

Detect outliers and anomalies

Choose appropriate algorithms

Inferential Statistics:

Hypothesis Testing: Is this result
significant?

Confidence Intervals: Range of plausible
values

p-values: Evidence against null hypothesis

Correlation: Linear relationship strength

A/B Testing

Test two versions of ML model

Measure performance difference

Use statistics to determine if difference is
significant

Make data-driven decisions!

13 / 27



Calculus: Optimizing Machine Learning

How do machines learn?

They optimize! And optimization needs calculus.

The Learning Process:

1 Start with random model

2 Measure how wrong it is (loss function)

3 Find direction to improve

4 Take a step in that direction

5 Repeat until optimal

Start

Optimal

Gradient

Parameters

Loss

14 / 27



Derivatives: The Rate of Change

What is a Derivative?

f ′(x) = lim
h→0

f (x + h)− f (x)

h

Slope of the tangent line

Rate of change at a point

Direction of steepest increase
Common Derivatives:

d

dx
[xn] = nxn−1 (1)

d

dx
[ex ] = ex (2)

d

dx
[ln x ] =

1

x
(3)

d

dx
[sin x ] = cos x (4)

−2 −1 1 2

−4

−2

2

4
f ′(x) = 2x

x

f (x)

ML Connection

Gradient Descent:

Calculate derivative of loss function

Move in opposite direction (negative
gradient)

Minimize error automatically!

wnew = wold − α
∂Loss

∂w
15 / 27



Partial Derivatives & Gradients: Multivariable Optimization

Partial Derivatives:
For function f (x , y):

∂f

∂x
= rate of change w.r.t. x (5)

∂f

∂y
= rate of change w.r.t. y (6)

Gradient Vector:

∇f =

[ ∂f
∂x
∂f
∂y

]
Points in direction of steepest increase

Magnitude = rate of steepest increase

Perpendicular to level curves

Gradient points away from minimum

Neural Networks

Backpropagation uses chain rule to compute
gradients of loss w.r.t. all parameters
efficiently!

16 / 27



Chain Rule: The Heart of Backpropagation

Chain Rule: If y = f (g(x)), then:

dy

dx
=

dy

dg
· dg
dx

Multiple Variables: If z = f (x , y) where x = g(t) and
y = h(t):

dz

dt
=

∂z

∂x

dx

dt
+

∂z

∂y

dy

dt

Why Critical for ML?

Neural networks are compositions fn(fn−1(...f1(x)))

Need gradients w.r.t. all parameters

Chain rule propagates error backwards

x h1 h2 y
w1 w2 w3

∂y
∂w1

∂y
∂w2

∂y
∂w3

Backpropagation

∂Loss

∂w1
=

∂Loss

∂y
· ∂y

∂h2
· ∂h2
∂h1

· ∂h1
∂w1

17 / 27



Optimization: Finding the Best Solution

Optimization Problem:

min
w

f (w)

Where f (w) is the loss/cost function
Critical Points:

∇f (w) = 0 (gradient is zero)

Could be minimum, maximum, or saddle
point

Second Derivative Test:

f ′′(w) > 0: Local minimum

f ′′(w) < 0: Local maximum

f ′′(w) = 0: Inconclusive

Gradient Descent Algorithm:

1 Initialize parameters w0

2 For t = 0, 1, 2, ...:

Compute gradient: gt = ∇f (wt)
Update: wt+1 = wt − αgt

3 Stop when converged

Learning Rate

α too large: Overshooting

α too small: Slow convergence

Need to tune carefully!

18 / 27



Example 1: Linear Regression

Problem: Predict house prices from features
Linear Algebra:

Data matrix X (houses × features)

Target vector y (prices)

Parameter vector w (weights)

Prediction: ŷ = Xw

Statistics:

Assume errors ∼ Normal distribution

Least squares estimation

R-squared for model evaluation

Calculus:

Loss function: L(w) = ∥Xw − y∥2

Take derivative: ∂L
∂w = 2XT (Xw − y)

Set to zero: XT (Xw − y) = 0

Solve: w = (XTX)−1XTy

All Three Together!

Linear algebra for data representation, statistics
for assumptions, calculus for optimization.

19 / 27



Example 2: Logistic Regression

Problem: Classify emails as spam or not spam

The Model:

P(spam|x) = 1

1 + e−wT x

Linear Algebra:

Feature vectors x (word counts, etc.)

Weight vector w

Linear combination wTx

Probability:

Sigmoid function maps to [0,1]

Bernoulli distribution for binary outcome

Maximum likelihood estimation

Calculus Optimization:
Loss function (negative log-likelihood):

L(w) = −
n∑

i=1

[yi log pi + (1− yi ) log(1− pi )]

Gradient:
∂L

∂w
= XT (p− y)

Update rule:

wt+1 = wt − αXT (p− y)

−5 5

0.2
0.4
0.6
0.8

z

σ(z)

Sigmoid Function

20 / 27



Example 3: Principal Component Analysis (PCA)

Problem: Reduce data dimensions while preserving information

The Algorithm:

1 Center the data: Xc = X− X̄

2 Compute covariance:
C = 1

nX
T
c Xc

3 Find eigenvalues/eigenvectors of
C

4 Sort by eigenvalue magnitude

5 Keep top k eigenvectors as
principal components

6 Project data: Y = XcWk

Mathematical Foundation:
Linear Algebra:

Eigendecomposition: Cv = λv

Matrix multiplication for projection

Orthogonal transformation

Statistics:

Variance measures information content

Covariance shows feature relationships

Principal components capture maximum variance

Applications

Image compression, Data visualization

Feature extraction, Noise reduction
21 / 27



Example 4: Neural Networks - The Full Package

Neural Networks Use ALL Mathematical Concepts!

Forward Pass (Linear Algebra):
z(1) = W(1)x+ b(1) (7)

a(1) = σ(z(1)) (8)

z(2) = W(2)a(1) + b(2) (9)

y = softmax(z(2)) (10)
Probability:

Softmax outputs probabilities

Cross-entropy loss

Dropout for regularization

Bayesian neural networks

Backward Pass (Calculus):
∂L

∂W(2)
=

∂L

∂z(2)
(a(1))T (11)

∂L

∂a(1)
= (W(2))T

∂L

∂z(2)
(12)

∂L

∂W(1)
=

∂L

∂z(1)
xT (13)

Chain Rule Everywhere:

∂L

∂W(1)
=

∂L

∂y

∂y

∂z(2)
∂z(2)

∂a(1)
∂a(1)

∂z(1)
∂z(1)

∂W(1)

The Beauty of Neural Networks

They seamlessly combine linear algebra (efficient computation), probability (uncertainty handling), and
calculus (automatic optimization) into one powerful framework! 22 / 27



How to Master These Mathematical Concepts

Study Strategy:

1 Start with intuition - Understand the
”why”

2 Practice calculations - Build mechanical
skills

3 Code implementations - Solidify
understanding

4 Apply to ML problems - See connections

5 Teach others - Test your knowledge

Don’t Fear the Math!

You don’t need to prove theorems

Focus on understanding and application

Use computational tools when appropriate

Recommended Resources:
Books:

”Mathematics for Machine Learning” -
Deisenroth et al.

”Linear Algebra Done Right” - Axler

”Introduction to Statistical Learning” -
James et al.

Online:

Khan Academy (basics)

3Blue1Brown (visual explanations)

MIT OpenCourseWare

Coursera/edX math courses

Practice:

Implement algorithms from scratch
23 / 27



Common Misconceptions & How to Avoid Them

Misconception 1: ”I need to memorize all formulas”

Reality: Understanding concepts ¿ memorizing formulas. Focus on intuition and derive when
needed.

Misconception 2: ”Linear algebra is just matrix arithmetic”

Reality: It’s about understanding transformations, spaces, and geometric relationships.

Misconception 3: ”Statistics is just calculating means and variances”

Reality: It’s about reasoning under uncertainty and making valid inferences from data.

Misconception 4: ”Calculus is just taking derivatives”

Reality: It’s about understanding rates of change and optimization in high dimensions.

Remember: Math is a tool to solve problems, not an end in itself!

24 / 27



Your Mathematical Journey in Machine Learning

Mathematical Foundations

Basic ML Algorithms

Advanced Algorithms

Research & Innovation

Linear Algebra
Probability & Statistics
Calculus

Linear/Logistic Regression
k-Means Clustering
Decision Trees

Neural Networks
SVMs, Random Forests
Deep Learning

Novel Architectures
Theoretical Analysis
Published Research

Timeline Estimate:

Foundations: 2-3 months

Basic ML: 2-3 months

Advanced: 6-12 months

Research: Ongoing!

Key Success Factors:

Consistent daily practice

Balance theory with implementation

Join study groups/communities

Work on real projects
25 / 27



Summary: The Mathematical Toolkit for ML

You now have the roadmap to mathematical mastery in ML!

y

Linear Algebra

Data representation

Efficient computation

Transformations

Dimensionality reduction

û

Probability & Statistics

Handle uncertainty

Model assumptions

Inference and testing

Confidence quantification

¢

Calculus

Optimization

Gradient descent

Backpropagation

Parameter tuning

Final Message

Mathematics is not a barrier to machine learning - it’s your superpower! Start with one
concept, practice consistently, and watch as the entire ML landscape opens up before you.

Questions? Let’s dive deeper into the mathematics of intelligence!

26 / 27



Thank You!

Mathematical Prerequisites for Machine Learning

# [sali85@student.gsu.edu]

� Department of Computer Science

� Georgia State University

”The only way to learn mathematics is to do mathematics.”
- Paul Halmos

Ready to start your mathematical journey in ML?
27 / 27


	Linear Algebra: The Language of Data
	Probability & Statistics: Handling Uncertainty
	Calculus: The Mathematics of Change
	Putting It All Together: ML Applications
	Practical Tips & Next Steps

