
Data Preprocessing
Core Foundations for Machine Learning

Sarwan Ali

Department of Computer Science
Georgia State University

õ Preparing Data for Machine Learning õ

1 / 30

Today’s Data Journey

1 Introduction to Data Preprocessing

2 Data Cleaning

3 Handling Missing Values

4 Feature Scaling

5 Encoding Categorical Variables

6 Feature Engineering

7 Data Quality Assessment

8 Preprocessing Pipeline

9 Summary

2 / 30

Why Data Preprocessing Matters

. “Garbage In, Garbage Out” .

Real-world Data Issues:

Inconsistent formats

Missing values

Outliers and noise

Different scales

Categorical variables

Duplicate records

Impact on ML Models:

Poor performance

Biased predictions

Convergence issues

Unreliable results

Computational inefficiency

Data scientists spend 80% of their time on data preprocessing!

3 / 30

Data Preprocessing Pipeline

Raw Data Data Cleaning Transformation ML-Ready Data

Missing values, Outliers, Duplicates Scaling, Encoding, Feature Engineering

4 / 30

Data Cleaning Overview

o Cleaning the Foundation o

Common Data Quality Issues:
1 Duplicate Records

Exact duplicates
Near duplicates

2 Inconsistent Data
Different formats
Case sensitivity
Spelling variations

3 Invalid Data
Out-of-range values
Impossible combinations

4 Outliers

Dirty Data

Cleaning

Clean Data

5 / 30

Handling Duplicates

Detection Strategies:
Exact Match:

All features identical

Simple to detect

Use hash functions

Fuzzy Match:

Similar but not identical

Use similarity metrics

Threshold-based decisions

Example Similarity Metrics:

Jaccard =
|A ∩ B|
|A ∪ B|

(1)

Cosine =
a · b
|a||b|

(2)

Edit Distance = min operations (3)

Best Practice: Always investigate before removing duplicates!

6 / 30

Data Consistency

Common Inconsistencies:

Issue Example Solution
Case sensitivity “USA”, “usa”, “Usa” Standardize case

Date formats “2023-01-15”, “15/01/2023” Unified format

Units “5 km”, “5000 m” Convert to standard

Abbreviations “Street”, “St.”, “St” Expand or standardize

Encoding UTF-8, ASCII issues Consistent encoding

Validation Rules:

Range checks: 18 ≤ age ≤ 120

Format validation: Email patterns, phone numbers

Cross-field validation: End date > Start date

Domain constraints: Valid country codes

7 / 30

Types of Missing Data

? Understanding Missingness Patterns ?

1. Missing Completely At Random
(MCAR)

No pattern to missingness

Independent of data values

✓ Safe to ignore

2. Missing At Random (MAR)

Pattern depends on observed data

Can be predicted from other variables

. Handle carefully

3. Missing Not At Random (MNAR)

Pattern depends on unobserved data

Systematic reason for missingness

p Most problematic

Example:

Income survey

High earners don’t respond

Missingness ∝ actual income

8 / 30

Missing Value Detection

Visual Inspection Methods:

Missing Value Heatmap

□ Missing

□ Present

Statistical Summary:

Missing percentage per feature

Correlation between missing patterns

Little’s MCAR test for randomness

9 / 30

Missing Value Strategies

1. Deletion Methods:

Listwise deletion: Remove entire rows

Pairwise deletion: Use available data

When to use: MCAR + sufficient data

2. Imputation Methods:

Simple: Mean, median, mode

Advanced: Regression, k-NN

Sophisticated: Multiple imputation

Simple Imputation Formulas:

x̄ =
1

n

n∑
i=1

xi (4)

median = x(n+1)/2 (5)

mode = argmax
x

P(X = x) (6)

k-NN Imputation:

x̂i =
1

k

∑
j∈Nk (i)

xj

where Nk(i) are k nearest neighbors

10 / 30

Advanced Imputation Techniques

Multiple Imputation Process:

Incomplete Data

Imputed Dataset 1

Imputed Dataset 2Imputed Dataset n

Analyze Each Dataset Pool Results

. . .

Matrix Factorization for Imputation:

X ≈ UV T where U ∈ Rm×k ,V ∈ Rn×k

Minimize: ∥Xobserved − (UV T)observed∥2F + λ(∥U∥2F + ∥V ∥2F)
11 / 30

Why Feature Scaling?

Í Bringing Features to the Same Scale Í

Problem Example:

Age Income ($) Distance (km)
25 50,000 2.5
30 75,000 1.8
45 120,000 5.2

Issues with Different Scales:

Distance-based algorithms dominated by large-scale features
Gradient descent convergence problems
Neural network training instability
Feature importance misinterpretation

Income dominates Euclidean distance calculations!
12 / 30

Normalization vs Standardization

Min-Max Normalization:

xnorm =
x − xmin

xmax − xmin

Properties:

Range: [0, 1]

Preserves relationships

Sensitive to outliers

Good for bounded algorithms

Robust Scaling:

xrobust =
x −median

Q3 − Q1

Z-Score Standardization:

xstd =
x − µ

σ

Properties:

Mean: 0, Std: 1

Assumes normal distribution

Less sensitive to outliers

Good for algorithms assuming normality

Unit Vector Scaling:

xunit =
x

∥x∥2

Choice depends on data distribution and algorithm requirements!
13 / 30

Scaling Methods Comparison

0 20 40 60 80100
0
2
4
6
8
10

Feature 1

F
ea
tu
re

2

Original Data

0 0.20.40.60.8 1
0

0.2
0.4
0.6
0.8
1

Feature 1
F
ea
tu
re

2

Min-Max Normalized

−2 −1 0 1 2
−2
−1
0
1
2

Feature 1

F
ea
tu
re

2

Standardized

14 / 30

When to Use Which Scaling?

Algorithm Type Preferred Scaling Reason
k-NN, k-Means Min-Max or Standardiza-

tion
Distance-based

SVM Standardization Assumes normal distribu-
tion

Neural Networks Standardization Gradient descent effi-
ciency

Tree-based None needed Split-based decisions

PCA Standardization Variance-based

Logistic Regre. Standardization Coefficient interpretation

Important Notes:

Apply same scaling to train/validation/test sets
Fit scaler only on training data
Store scaling parameters for new data
Consider feature distributions when choosing method

15 / 30

Types of Categorical Variables

V Handling Non-Numeric Data V

Nominal Variables:

No inherent order

Examples: Color, Country, Gender

Categories are mutually exclusive

Example:

Color
Red
Blue
Green

Ordinal Variables:

Natural ordering exists

Examples: Size, Rating, Education Level

Relative ranking matters

Example:

Size Order
Small 1

Medium 2
Large 3

Different encoding strategies needed for different types!

16 / 30

Label Encoding

Simple Integer Mapping:

Original Label Encoded
Cat 0
Dog 1
Bird 2
Cat 0
Dog 1

Advantages:

Simple and memory efficient

Preserves all information

Good for ordinal variables

Works with tree-based algorithms

Disadvantages:

Implies false ordering for nominal

Can mislead distance-based algorithms

Dog− Cat = 1 has no meaning

May create bias in linear models

Caution: Only use for ordinal variables or tree-based algorithms!
17 / 30

One-Hot Encoding

Binary Vector Representation:
Original Cat Dog Bird

Cat 1 0 0
Dog 0 1 0
Bird 0 0 1
Cat 1 0 0
Dog 0 1 0

Mathematical Representation: For category ci in variable X with k categories:

Xone−hot = [x1, x2, . . . , xk] where xj =

{
1 if X = cj

0 otherwise

Advantages:

No false ordering

Works with all algorithms

Interpretable coefficients

Mathematically sound

Disadvantages:

Increases dimensionality

Sparse matrices

Multicollinearity (dummy variable trap)

Memory intensive for high cardinality
18 / 30

Advanced Encoding Techniques

1. Target Encoding (Mean Encoding):

encoded(ci) =

∑
j :xj=ci

yj∑
j :xj=ci

1

Replace category with target mean

Risk of overfitting

Use cross-validation or smoothing

2. Binary Encoding:

Category Index Binary Encoded
Cat 0 00 [0, 0]
Dog 1 01 [0, 1]
Bird 2 10 [1, 0]
Fish 3 11 [1, 1]

3. Hashing:
hash(category) mod n = bucket index

Useful for high cardinality, but may cause collisions.
19 / 30

Handling High Cardinality

Problem: Categories with many unique values

Strategies:
1. Frequency-Based Grouping:

Keep top N categories

Group rare categories as ”Other”

Based on occurrence threshold

2. Domain Knowledge:

Logical groupings

Hierarchical categories

Business-driven consolidation

3. Embedding Techniques:

Entity embeddings

Learned representations

Dimensionality reduction

Example - Cities:

1000+ unique cities

Group by region/country

Keep top 50, rest as ”Other”

Rule of thumb: If cardinality ¿ 10-15, consider grouping strategies

20 / 30

Introduction to Feature Engineering

Ô Creating Better Features from Raw Data Ô

What is Feature Engineering?

Creating new features from existing ones

Domain knowledge application

Improving model performance

Making patterns more obvious

Types of Feature Engineering:

Mathematical transformations

Interaction features

Temporal features

Aggregations

Example Transformations:

BMI =
Weight

Height2
(7)

Age Group = ⌊Age
10

⌋ (8)

Interaction = X1 × X2 (9)

log(X) = ln(X + 1) (10)

Benefits:

Better model interpretability

Improved prediction accuracy

Reduced training time

Domain expertise incorporation
21 / 30

Mathematical Transformations

Common Transformations:

1. Polynomial Features:

Xpoly = [x , x2, x3, . . . , xn]

2. Logarithmic: Xlog = log(x + c) where c
prevents log(0)
3. Square Root: Xsqrt =

√
x

4. Reciprocal:

Xrecip =
1

x + ϵ

5. Binning/Discretization:

Xbin =

1 if x ∈ [a1, a2)

2 if x ∈ [a2, a3)
...

...

n if x ∈ [an−1, an]

6. Trigonometric:

Xtrig = [sin(x), cos(x), tan(x)]

Useful for cyclical features (time, angles)

Choose transformations based on data distribution and domain knowledge

22 / 30

Temporal Feature Engineering

Extracting Information from Timestamps:

Original Feature Example
2023-07-15 14:30:00 Year 2023

Month 7
Day 15
Hour 14
Day of Week Saturday
Quarter Q3
Is Weekend True
Season Summer

Advanced Temporal Features:

Time since last event: tcurrent − tlast
Rolling statistics: Moving averages, standard deviations
Lag features: Values from t − 1, t − 2, . . .
Cyclical encoding: sin(2π · hour

24), cos(2π · hour
24)

23 / 30

Data Quality Metrics

¢ Measuring Data Quality ¢

1. Completeness: C = Non-null values
Total values × 100%

2. Consistency: CS = Consistent records
Total records × 100%

3. Accuracy: A = Correct values
Total values × 100%

4. Uniqueness: U = Unique records
Total records × 100%

5. Validity: V = Valid format values
Total values × 100%

6. Timeliness: T = Current records
Total records × 100%

Overall Data Quality Score:

DQ = w1 · C + w2 · CS + w3 · A+ w4 · U + w5 · V + w6 · T

where
∑

wi = 1 and weights reflect business importance.

24 / 30

Outlier Detection Methods

Statistical Methods:

1. Z-Score Method: z = x−µ
σ

Outlier if |z | > threshold (typically 2-3)

2. IQR Method:

IQR = Q3 − Q1

Lower bound = Q1 − 1.5× IQR

Upper bound = Q3 + 1.5× IQR

3. Modified Z-Score:

Mi =
0.6745(xi − x̃)

MAD

where MAD is median absolute deviation

Machine Learning Methods:
1. Isolation Forest:

Tree-based anomaly detection

Isolates outliers faster

Works well in high dimensions

2. Local Outlier Factor (LOF):

LOFk(x) =

∑
y∈Nk (x)

lrdk (y)
lrdk (x)

|Nk(x)|

3. One-Class SVM:

Learns normal data boundary

Kernel-based approach

Good for complex patterns
25 / 30

Building a Preprocessing Pipeline

ï Systematic Data Preparation ï

Raw Data Data Exploration

Quality CheckData CleaningHandle Missing Values

Outlier Treatment Categorical Encoding

Feature Scaling Feature Engineering ML-Ready Data

Poor
Good

26 / 30

Pipeline Implementation Best Practices

Key Principles:
1. Reproducibility:

Set random seeds

Document all steps

Version control transformations

Save preprocessing parameters

2. Data Leakage Prevention:

Fit only on training data

Transform test data using training
parameters

No future information in features

Separate validation properly

3. Modular Design:

Separate functions for each step

Reusable components

Easy to modify and debug

Pipeline orchestration tools

4. Performance Optimization:

Vectorized operations

Memory-efficient processing

Parallel processing where possible

Caching intermediate results

Critical: Never fit preprocessing on test data!
27 / 30

Common Preprocessing Mistakes

. Pitfalls to Avoid .

1 Data Leakage: Using future information or test statistics

2 Inconsistent Preprocessing: Different steps for train/test

3 Over-Engineering: Creating too many irrelevant features

4 Ignoring Domain Knowledge: Purely algorithmic approach

5 Not Handling Rare Categories: Issues with unseen categories

6 Scaling Before Splitting: Computing statistics on entire dataset

7 Ignoring Missing Patterns: Not understanding why data is missing

8 One-Size-Fits-All: Same preprocessing for different algorithms

Remember: Good preprocessing is algorithm and problem specific!

28 / 30

Key Takeaways

� Data Preprocessing Essentials �

Core Steps:

Data cleaning and quality assessment

Missing value handling strategies

Appropriate scaling techniques

Categorical variable encoding

Feature engineering opportunities

Critical Success Factors:

Domain knowledge integration

Algorithm-specific preprocessing

Avoiding data leakage

Systematic pipeline approach

Decision Framework:

Analyze data distribution

Understand missing patterns

Choose appropriate techniques

Validate preprocessing impact

Monitor for concept drift

Quality Metrics:

Completeness, consistency

Accuracy and validity

Model performance improvement

Interpretability preservation

Great preprocessing is the foundation of successful machine learning!
29 / 30

Questions?

sali85@student.gsu.edu

õ Next: Types of Machine Learning: Supervised, unsupervised, and
reinforcement learning overview

30 / 30

	Introduction to Data Preprocessing
	Data Cleaning
	Handling Missing Values
	Feature Scaling
	Encoding Categorical Variables
	Feature Engineering
	Data Quality Assessment
	Preprocessing Pipeline
	Summary

