Data Preprocessing Core Foundations for Machine Learning

Sarwan Ali

Department of Computer Science Georgia State University

<ロト < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 0 へ () 1/30

Today's Data Journey

- Introduction to Data Preprocessing
- 2 Data Cleaning
- Handling Missing Values
- 4 Feature Scaling
- 6 Encoding Categorical Variables
- 6 Feature Engineering
- 🕖 Data Quality Assessment
- Preprocessing Pipeline
 - Summary

Why Data Preprocessing Matters

🛕 "Garbage In, Garbage Out" 🛕

Real-world Data Issues:

- Inconsistent formats
- Missing values
- Outliers and noise
- Different scales
- Categorical variables
- Duplicate records

Impact on ML Models:

- Poor performance
- Biased predictions
- Convergence issues
- Unreliable results
- Computational inefficiency

Data scientists spend 80% of their time on data preprocessing!

Missing values, Outliers, Duplicates Scaling, Encoding, Feature Engineering

Common Data Quality Issues:

Ouplicate Records

- Exact duplicates
- Near duplicates

Inconsistent Data

- Different formats
- Case sensitivity
- Spelling variations

Invalid Data

- Out-of-range values
- Impossible combinations

Outliers

Detection Strategies: Exact Match:

- All features identical
- Simple to detect
- Use hash functions

Fuzzy Match:

- Similar but not identical
- Use similarity metrics
- Threshold-based decisions

Example Similarity Metrics:

$$Jaccard = \frac{|A \cap B|}{|A \cup B|}$$
(1)
$$Cosine = \frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{a}||\mathbf{b}|}$$
(2)

Edit Distance = min operations
$$(3)$$

Best Practice: Always investigate before removing duplicates!

Common Inconsistencies:

Issue	Example	Solution
Case sensitivity	"USA", "usa", "Usa"	Standardize case
Date formats	"2023-01-15", "15/01/2023"	Unified format
Units	"5 km", "5000 m"	Convert to standard
Abbreviations	"Street", "St.", "St"	Expand or standardize
Encoding	UTF-8, ASCII issues	Consistent encoding

Validation Rules:

- Range checks: $18 \le age \le 120$
- Format validation: Email patterns, phone numbers
- \bullet Cross-field validation: End date > Start date
- Domain constraints: Valid country codes

? Understanding Missingness Patterns ?

- 1. Missing Completely At Random (MCAR)
 - No pattern to missingness
 - Independent of data values
 - Safe to ignore
- 2. Missing At Random (MAR)
 - Pattern depends on observed data
 - Can be predicted from other variables
 - 🛕 Handle carefully

- 3. Missing Not At Random (MNAR)
 - Pattern depends on unobserved data
 - Systematic reason for missingness
 - × Most problematic

Example:

- Income survey
- High earners don't respond
- Missingness \propto actual income

Missing Value Detection

Visual Inspection Methods:

Missing Value Heatmap

Statistical Summary:

- Missing percentage per feature
- Correlation between missing patterns
- Little's MCAR test for randomness

A D > A B > A B > A B >

Simple Imputation Formulas:

1. Deletion Methods:

- Listwise deletion: Remove entire rows
- Pairwise deletion: Use available data
- When to use: MCAR + sufficient data

2. Imputation Methods:

- Simple: Mean, median, mode
- Advanced: Regression, k-NN
- Sophisticated: Multiple imputation

$$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i \tag{4}$$

$$median = x_{(n+1)/2}$$
(5)

$$mode = \arg \max_{x} P(X = x)$$
 (6)

k-NN Imputation:

$$\hat{x}_i = \frac{1}{k} \sum_{j \in N_k(i)} x_j$$

where $N_k(i)$ are k nearest neighbors

Advanced Imputation Techniques

Multiple Imputation Process:

Matrix Factorization for Imputation:

$$X pprox UV^{\mathcal{T}}$$
 where $U \in \mathbb{R}^{m imes k}, V \in \mathbb{R}^{n imes k}$

Minimize: $||X_{observed} - (UV^T)_{observed}||_F^2 + \lambda(||U||_F^2 + ||V||_F^2)$

🚂 Bringing Features to the Same Scale 🊂

Problem Example:

Age	Income (\$)	Distance (km)
25	50,000	2.5
30	75,000	1.8
45	120,000	5.2

Issues with Different Scales:

- Distance-based algorithms dominated by large-scale features
- Gradient descent convergence problems
- Neural network training instability
- Feature importance misinterpretation

Income dominates Euclidean distance calculations!

Normalization vs Standardization

Min-Max Normalization:

$$x_{norm} = \frac{x - x_{min}}{x_{max} - x_{min}}$$

Properties:

- Range: [0,1]
- Preserves relationships
- Sensitive to outliers
- Good for bounded algorithms

Robust Scaling:

$$x_{robust} = \frac{x - \text{median}}{Q_3 - Q_1}$$

Z-Score Standardization:

$$x_{std} = \frac{x - \mu}{\sigma}$$

Properties:

- Mean: 0, Std: 1
- Assumes normal distribution
- Less sensitive to outliers
- Good for algorithms assuming normality

Unit Vector Scaling:

$$x_{unit} = \frac{x}{\|x\|_2}$$

Choice depends on data distribution and algorithm requirements!

When to Use Which Scaling?

Algorithm Type	Preferred Scaling	Reason	
k-NN, k-Means	Min-Max or Standardiza-	Distance-based	
	tion		
SVM	Standardization	Assumes normal distribu-	
		tion	
Neural Networks	Standardization	Gradient descent effi-	
		ciency	
Tree-based	None needed	Split-based decisions	
PCA	Standardization	Variance-based	
Logistic Regre.	Standardization	Coefficient interpretation	

Important Notes:

- Apply same scaling to train/validation/test sets
- Fit scaler only on training data
- Store scaling parameters for new data
- Consider feature distributions when choosing method

🏷 Handling Non-Numeric Data 📎

Nominal Variables:

- No inherent order
- Examples: Color, Country, Gender
- Categories are mutually exclusive

Color Red Blue Green

Example:

Ordinal Variables:

- Natural ordering exists
- Examples: Size, Rating, Education Level
- Relative ranking matters

Example:

Size	Order	
Small	1	
Medium	2	
Large	3	

Different encoding strategies needed for different types!

Label Encoding

Simple Integer Mapping:

Original	Label Encoded
Cat	0
Dog	1
Bird	2
Cat	0
Dog	1

Advantages:

- Simple and memory efficient
- Preserves all information
- Good for ordinal variables
- Works with tree-based algorithms

Disadvantages:

- Implies false ordering for nominal
- Can mislead distance-based algorithms
- Dog Cat = 1 has no meaning
- May create bias in linear models

Caution: Only use for ordinal variables or tree-based algorithms!

One-Hot Encoding

Binary Vector Representation:

Original	Cat	Dog	Bird
Cat	1	0	0
Dog	0	1	0
Bird	0	0	1
Cat	1	0	0
Dog	0	1	0

Mathematical Representation: For category c_i in variable X with k categories:

$$X_{one-hot} = [x_1, x_2, \dots, x_k] \text{ where } x_j = \begin{cases} 1 & \text{if } X = c_j \\ 0 & \text{otherwise} \end{cases}$$

Advantages:

- No false ordering
- Works with all algorithms
- Interpretable coefficients
- Mathematically sound

Disadvantages:

- Increases dimensionality
- Sparse matrices
- Multicollinearity (dummy variable trap)
- Memory intensive for high cardinality

Advanced Encoding Techniques

1. Target Encoding (Mean Encoding):

$$\mathsf{encoded}(c_i) = rac{\sum_{j: x_j = c_i} y_j}{\sum_{j: x_j = c_i} 1}$$

- Replace category with target mean
- Risk of overfitting
- Use cross-validation or smoothing

2. Binary Encoding:

Category	Index	Binary	Encoded
Cat	0	00	[0, 0]
Dog	1	01	[0, 1]
Bird	2	10	[1, 0]
Fish	3	11	[1, 1]

3. Hashing:

hash(category) mod n = bucket index

Useful for high cardinality, but may cause collisions.

Handling High Cardinality

Problem: Categories with many unique values

Strategies:

- 1. Frequency-Based Grouping:
 - Keep top N categories
 - Group rare categories as "Other"
 - Based on occurrence threshold

2. Domain Knowledge:

- Logical groupings
- Hierarchical categories
- Business-driven consolidation

3. Embedding Techniques:

- Entity embeddings
- Learned representations
- Dimensionality reduction

Example - Cities:

- 1000+ unique cities
- Group by region/country
- Keep top 50, rest as "Other"

Rule of thumb: If cardinality ¿ 10-15, consider grouping strategies

🗱 Creating Better Features from Raw Data 🗱

Example Transformations:

What is Feature Engineering?

- Creating new features from existing ones
- Domain knowledge application
- Improving model performance
- Making patterns more obvious

Types of Feature Engineering:

- Mathematical transformations
- Interaction features
- Temporal features
- Aggregations

$$BMI = \frac{Weight}{Height^2}$$
(7)
Age Group = $\lfloor \frac{Age}{10} \rfloor$ (8)

Interaction
$$= X_1 \times X_2$$
 (9)

$$\log(X) = \ln(X+1) \tag{10}$$

Benefits:

- Better model interpretability
- Improved prediction accuracy
- Reduced training time

Mathematical Transformations

Common Transformations:

1. Polynomial Features:

$$X_{poly} = [x, x^2, x^3, \dots, x^n]$$

2. Logarithmic: $X_{log} = \log(x + c)$ where c prevents $\log(0)$

3. Square Root:
$$X_{sqrt} = \sqrt{x}$$

4. Reciprocal:

$$X_{recip} = rac{1}{x+\epsilon}$$

5. Binning/Discretization:

$$X_{bin} = \begin{cases} 1 & \text{if } x \in [a_1, a_2) \\ 2 & \text{if } x \in [a_2, a_3) \\ \vdots & \vdots \\ n & \text{if } x \in [a_{n-1}, a_n] \end{cases}$$

6. Trigonometric:

$$X_{trig} = [\sin(x), \cos(x), \tan(x)]$$

Useful for cyclical features (time, angles)

Choose transformations based on data distribution and domain knowledge

Temporal Feature Engineering

Extracting Information from Timestamps:

Original	Feature	Example
2023-07-15 14:30:00	Year	2023
	Month	7
	Day	15
	Hour	14
	Day of Week	Saturday
	Quarter	Q3
	Is Weekend	True
	Season	Summer

Advanced Temporal Features:

- Time since last event: $t_{current} t_{last}$
- Rolling statistics: Moving averages, standard deviations
- Lag features: Values from t 1, t 2, ...
- Cyclical encoding: $sin(2\pi \cdot \frac{hour}{24})$, $cos(2\pi \cdot \frac{hour}{24})$

・ロト・(日)・ (日)・ (日)・ (日)

🗠 Measuring Data Quality 🗠

1. Completeness: $C = \frac{\text{Non-null values}}{\text{Total values}} \times 100\%$ 4. Uniqueness: $U = \frac{\text{Unique records}}{\text{Total records}} \times 100\%$ 2. Consistency: $CS = \frac{\text{Consistent records}}{\text{Total records}} \times 100\%$ 5. Validity: $V = \frac{\text{Valid format values}}{\text{Total values}} \times 100\%$ 3. Accuracy: $A = \frac{\text{Correct values}}{\text{Total values}} \times 100\%$ 6. Timeliness: $T = \frac{\text{Current records}}{\text{Total records}} \times 100\%$ Overall Data Quality Score:

$$DQ = w_1 \cdot C + w_2 \cdot CS + w_3 \cdot A + w_4 \cdot U + w_5 \cdot V + w_6 \cdot T$$

where $\sum w_i = 1$ and weights reflect business importance.

Outlier Detection Methods

Statistical Methods: 1. Z-Score Method: $z = \frac{x-\mu}{r}$

Outlier if |z| > threshold (typically 2-3)

2. IQR Method:

$$IQR = Q_3 - Q_1$$

Lower bound = $Q_1 - 1.5 imes IQR$

Upper bound = $\textit{Q}_3 + 1.5 imes \textit{IQR}$

3. Modified Z-Score:

$$M_i = \frac{0.6745(x_i - \tilde{x})}{MAD}$$

where $\ensuremath{\textit{MAD}}$ is median absolute deviation

Machine Learning Methods:

- 1. Isolation Forest:
 - Tree-based anomaly detection
 - Isolates outliers faster
 - Works well in high dimensions
- 2. Local Outlier Factor (LOF):

$$LOF_k(x) = \frac{\sum_{y \in N_k(x)} \frac{lrd_k(y)}{lrd_k(x)}}{|N_k(x)|}$$

- 3. One-Class SVM:
 - Learns normal data boundary
 - Kernel-based approach
 - Good for complex patterns * * * * *

Building a Preprocessing Pipeline

🕍 Systematic Data Preparation 🕍

Pipeline Implementation Best Practices

Key Principles: 1. Reproducibility:

- - Set random seeds
 - Document all steps
 - Version control transformations
 - Save preprocessing parameters
- 2. Data Leakage Prevention:
 - Fit only on training data
 - Transform test data using training parameters
 - No future information in features
 - Separate validation properly

3. Modular Design:

- Separate functions for each step
- Reusable components
- Easy to modify and debug
- Pipeline orchestration tools

4. Performance Optimization:

- Vectorized operations
- Memory-efficient processing
- Parallel processing where possible
- Caching intermediate results

Critical: Never fit preprocessing on test data

🛕 Pitfalls to Avoid 🛕

- **Data Leakage:** Using future information or test statistics
- **One of the set of the**
- **Over-Engineering:** Creating too many irrelevant features
- **Ignoring Domain Knowledge:** Purely algorithmic approach
- **ONOT Handling Rare Categories:** Issues with unseen categories
- **O Scaling Before Splitting:** Computing statistics on entire dataset
- **Ignoring Missing Patterns:** Not understanding why data is missing
- **One-Size-Fits-All:** Same preprocessing for different algorithms

Remember: Good preprocessing is algorithm and problem specific!

Key Takeaways

💡 Data Preprocessing Essentials 🍨

Core Steps:

- Data cleaning and quality assessment
- Missing value handling strategies
- Appropriate scaling techniques
- Categorical variable encoding
- Feature engineering opportunities

Critical Success Factors:

- Domain knowledge integration
- Algorithm-specific preprocessing
- Avoiding data leakage
- Systematic pipeline approach

Decision Framework:

- Analyze data distribution
- Understand missing patterns
- Choose appropriate techniques
- Validate preprocessing impact
- Monitor for concept drift

Quality Metrics:

- Completeness, consistency
- Accuracy and validity
- Model performance improvement
- Interpretability preservation

Great preprocessing is the foundation of successful machine learning!

Questions?

≥ sali85@student.gsu.edu

Next: Types of Machine Learning: Supervised, unsupervised, and reinforcement learning overview