Model Evaluation and Selection Bias-Variance Tradeoff, Overfitting, Underfitting, and Model Complexity

Sarwan Ali

Department of Computer Science Georgia State University

🗠 Model Evaluation & Selection 🐴

< □ > < □ > < □ > < Ξ > < Ξ > Ξ
 < ○ Q <>
 1/29

Today's Learning Journey

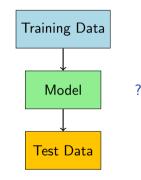
- 1 Introduction to Model Evaluation
- 2 The Bias-Variance Tradeoff
- Overfitting and Underfitting
- 4 Model Complexity
- 6 Model Selection Strategies
- 6 Regularization Techniques
- Performance Metrics
- 8 Practical Guidelines
- 9 Conclusion

Key Questions:

- How well does our model perform on unseen data?
- Is our model too simple or too complex?
- How do we choose between different models?
- What causes poor generalization?

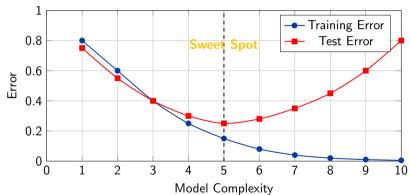
The Goal:

Build models that generalize well to new, unseen data



(a)

Training vs. Test Performance



The Fundamental Challenge

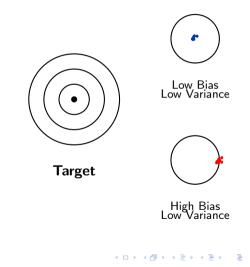
4 ロ ト 4 日 ト 4 目 ト 4 目 ト 1 の 4 で
4 / 29

Bias:

- Error due to oversimplifying assumptions
- How far off is the average prediction?
- High bias = underfitting

Variance:

- Error due to sensitivity to training data
- How much do predictions vary?
- High variance = overfitting



Mathematical Formulation

For a prediction $\hat{f}(x)$ at point x, the expected test error decomposes as:

Expected Test Error =
$$\text{Bias}^2 + \text{Variance} + \text{Noise}$$
 (1)

$$E[(y - \hat{f}(x))^2] = \underbrace{[\text{Bias}(\hat{f}(x))]^2}_{\text{Underfitting}} + \underbrace{\text{Var}(\hat{f}(x))}_{\text{Overfitting}} + \underbrace{\frac{\sigma^2}{\text{Irreducible}}}_{(2)}$$

Where:

- $Bias(\hat{f}(x)) = E[\hat{f}(x)] f(x)$
- $Var(\hat{f}(x)) = E[(\hat{f}(x) E[\hat{f}(x)])^2]$
- σ^2 is the irreducible error

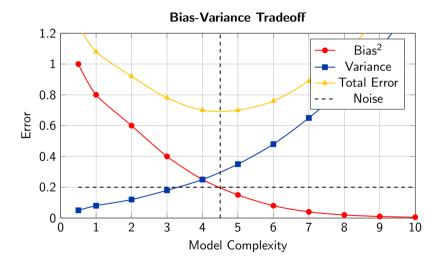
(systematic error)

(variability)

(noise in data)

6 / 29

The Tradeoff Visualization



Underfitting: Too Simple Models

Characteristics:

- High bias, low variance
- Poor performance on both training and test data
- Model is too simple to capture underlying patterns
- Systematic errors in predictions

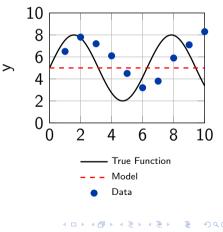
Examples:

- Linear regression for non-linear data
- Decision tree with very few splits
- Neural network with too few neurons

Solutions:

- Increase model complexity
- Add more features
- Reduce regularization

Underfitting Example



Overfitting: Too Complex Models

Characteristics:

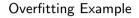
- Low bias, high variance
- Excellent training performance
- Poor test performance
- Model memorizes training data

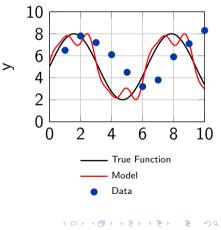
Examples:

- High-degree polynomial regression
- Decision tree with many deep splits
- Neural network with too many parameters

Solutions:

- Reduce model complexity
- Add regularization
- Collect more training data
- Early stopping





Identifying Over/Underfitting

Key Insight: The **gap** between training and test error is often more important than absolute error values!

What is Model Complexity?

Model complexity refers to the capacity of a model to fit diverse patterns in data.

Low Complexity:

- Few parameters
- Simple functional forms
- Strong assumptions
- Limited flexibility

Examples:

- Linear regression
- Naive Bayes
- Shallow decision trees

High Complexity:

- Many parameters
- Complex functional forms
- Fewer assumptions
- High flexibility

Examples:

- Deep neural networks
- High-degree polynomials
- Deep decision trees

A Complexity is not just about number of parameters!

Measuring Model Complexity

Common Measures:

O Number of Parameters

- Most intuitive measure
- More parameters = more complexity

VC Dimension

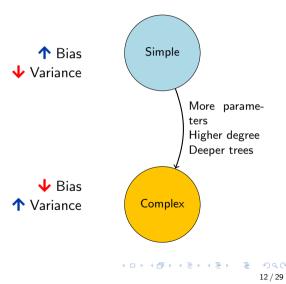
- Theoretical measure
- Maximum points that can be shattered

8 Rademacher Complexity

- Measures richness of function class
- Based on random noise fitting

Regularization Parameter

- Inverse relationship with complexity
- Higher regularization = lower complexity



Model Type	Complexity Controller	Effect
Polynomial Regression	Degree of polynomial	Higher degree = more complex
Decision Trees	Max depth, min samples	Deeper/smaller splits = more complex
Neural Networks	# layers, # neurons	More layers/neurons = more complex
k-NN	Value of k	Smaller $k = more complex$
SVM	Regularization parameter C	Higher $C = more \ complex$
Ridge/Lasso	Regularization parameter λ	Smaller $\lambda = more \ complex$

Key Insight: Different models have different ways to control complexity, but the bias-variance tradeoff applies universally!

Goal: Estimate how well our model generalizes to unseen data

k-Fold Cross-Validation:

- Split data into k equal folds
- Por each fold:
 - Train on k-1 folds
 - Validate on remaining fold
- Average validation scores

Benefits:

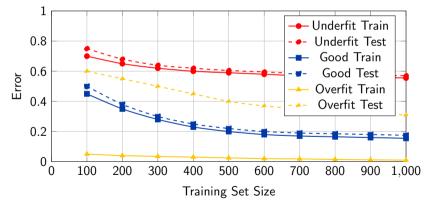
- Uses all data for both training and validation
- Reduces variance in performance estimates
- Helps detect overfitting

Train on blue Test on red Repeat 5 times

5-Fold CV

Learning curves show performance vs. training set size

Learning Curves for Different Scenarios



Validation curves show performance vs. hyperparameter values

Inderfitting Overfitting 0.8 0.6 Error 0.4 - Training Error 0.2 Validation Error 0 2 6 4 8 10 12 14 Hyperparameter Value (e.g., Polynomial Degree)

Validation Curve Example

Use validation curves to: Select optimal hyperparameters, identify over/underfitting regions

Introduction to Regularization

Regularization: Adding a penalty term to prevent overfitting

Original Loss + Regularization Penalty = Total Loss

$$\mathcal{L}_{\mathsf{total}} = \mathcal{L}_{\mathsf{data}} + \lambda \cdot \mathcal{R}(\theta)$$

Fit to data Regularization strength Penalty on complexity

Key Ideas:

- λ controls the bias-variance tradeoff
- Higher $\lambda \rightarrow$ simpler models (higher bias, lower variance)
- Lower $\lambda \rightarrow$ more complex models (lower bias, higher variance)

L1 and L2 Regularization

L2 Regularization (Ridge): $\mathcal{R}(\theta) = \sum_{i=1}^{p} \theta_i^2$ **Properties:**

- Shrinks coefficients toward zero
- Keeps all features
- Smooth penalty function
- Handles multicollinearity well
- **Effect:** Coefficients become smaller but remain non-zero

L2: Circle $\theta_1^2 + \theta_2^2 \le t$

L1 Regularization (Lasso): $\mathcal{R}(\theta) = \sum_{i=1}^{p} |\theta_i|$ Properties:

- Can set coefficients exactly to zero
- Performs feature selection
- Non-smooth at zero
- Sparse solutions

Effect: Some coefficients become exactly zero

L1: Diamond $|\theta_1| + |\theta_2| \le t$

Elastic Net: Best of Both Worlds

Elastic Net combines L1 and L2 regularization:

$$\mathcal{R}(\theta) = \alpha \sum_{i=1}^{p} |\theta_i| + (1 - \alpha) \sum_{i=1}^{p} \theta_i^2$$

Hyperparameters:

- λ : Overall regularization strength
- $\alpha \in [0,1]$: Mix between L1 and L2
 - $\alpha = 0$: Pure L2 (Ridge)
 - $\alpha = 1$: Pure L1 (Lasso)
 - $0 < \alpha < 1$: Combination

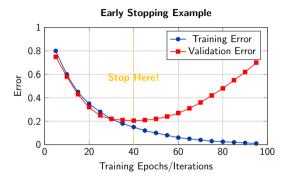
Advantages:

- Feature selection like Lasso
- Stability like Ridge
- Handles correlated features better than Lasso alone

・ロト ・ 御 ト ・ ヨ ト ・ ヨ ト

Early Stopping

Stop training when validation performance stops improving



Implementation:

- Monitor validation error during training
- Stop when validation error increases for several epochs
- Use patience parameter to avoid stopping too early

A D > A B > A B > A B >

Classification Metrics

Confusion Matrix:

	Pred +	Pred -
Actual +	TP	FN
Actual -	FP	ΤN

Key Metrics:

$$Accuracy = \frac{TP + TN}{TP + TN + FP + FN}$$
(3)

$$Precision = \frac{TP}{TP + FP}$$
(4)

$$\mathsf{Recall} = \frac{TP}{TP + FN} \tag{5}$$

$$\mathsf{F1}\text{-}\mathsf{Score} = \frac{2 \cdot \mathsf{Precision} \cdot \mathsf{Recall}}{\mathsf{Precision} + \mathsf{Recall}}$$

When to Use:

- Accuracy: Balanced datasets
- Precision: When false positives are costly
- Recall: When false negatives are costly
- F1-Score: Imbalanced datasets

ROC-AUC:

(6)

- Area Under ROC Curve
- Plots True Positive Rate vs False Positive Rate

- Good for binary classification
- Range: [0, 1], higher is better

Precision-Recall AUC:

- Better for imbalanced datasets
- Focuses on positive class performance

Regression Metrics

Common Regression Metrics:

$$MSE = \frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

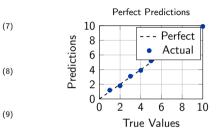
$$\mathsf{RMSE} = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2}$$

$$\mathsf{MAE} = \frac{1}{n} \sum_{i=1}^{n} |y_i - \hat{y}_i|$$

$$R^{2} = 1 - \frac{\sum_{i=1}^{n} (y_{i} - \hat{y}_{i})^{2}}{\sum_{i=1}^{n} (y_{i} - \bar{y})^{2}}$$

Properties:

- MSE/RMSE: Penalize large errors more
- MAE: Robust to outliers
- R^2 : Proportion of variance explained

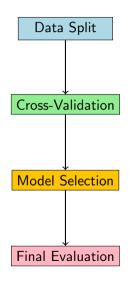


- (10) Choosing Metrics:
 - **RMSE:** When large errors matter more

イロン 不良 とうほう イロン 一日

- MAE: When all errors matter equally
- R^2 : For model comparison

Model Selection Workflow



- Train/Validation/Test
- Typically 60/20/20 or 70/15/15
- k-fold CV on train+validation
- Tune hyperparameters
- Compare different models
- Choose best model
- Based on CV results
- Consider complexity vs performance
- Test on held-out set
- Report final performance
- NO more tuning allowed!

э

Detecting and Preventing Overfitting

Warning Signs:

- Large gap between train and validation error
- Training error continues decreasing while validation error increases
- Model performs much worse on new data
- Very complex model with little improvement

Detection Methods:

- Learning curves
- Validation curves
- Cross-validation
- Hold-out validation

Prevention Strategies:

- More Data: Collect additional training samples
- **Regularization:** L1, L2, or Elastic Net
- Early Stopping: Stop training early
- Dropout: For neural networks
- Feature Selection: Remove irrelevant features
- Ensemble Methods: Combine multiple models
- Cross-Validation: For model selection
- A Remember: Prevention is better than cure!

Handling Underfitting

Warning Signs:

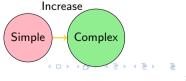
- Both training and validation errors are high
- Small gap between train and validation error
- Model performs poorly even on training data
- Learning curves plateau quickly

Common Causes:

- Model too simple for the data
- Insufficient features
- Over-regularization
- Poor feature engineering

Solutions:

- Increase Complexity: More parameters, deeper models
- Feature Engineering: Add polynomial features, interactions
- Reduce Regularization: Lower λ values
- **Different Model:** Try more flexible algorithms
- Domain Knowledge: Add relevant features
- Data Preprocessing: Better scaling, encoding



Best Practices Summary

Model Evaluation Best Practices

1. Data Management:

- Always keep a separate test set
- Never use test data for model selection
- Use stratified sampling for imbalanced data

2. Model Selection:

- Use cross-validation for hyperparameter tuning
- Compare multiple models systematically
- Consider computational constraints

3. Evaluation Strategy:

- Choose appropriate metrics for your problem
- Use multiple metrics to get complete picture
- Plot learning and validation curves

4. Overfitting Prevention:

- Start simple, then increase complexity
- Monitor training vs validation performance
- Use regularization techniques appropriately

Key Takeaways

The Big Picture:

Bias-Variance Tradeoff is fundamental

- Every model has this tradeoff
- Optimal complexity balances both

Overfitting vs Underfitting

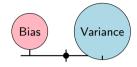
- Monitor training vs validation performance
- Use appropriate techniques for each

Source Selection requires careful methodology

- Cross-validation is your friend
- Never peek at test data

9 Regularization helps control complexity

- L1, L2, Elastic Net, Early Stopping
- Choose based on your needs



💡 Remember:

"All models are wrong, but some are useful"

- George Box

Next Steps

What's Coming Next:

• Ensemble Methods: Combining multiple models

- Bagging, Boosting, Stacking
- Random Forests, Gradient Boosting

• Advanced Regularization: Beyond L1/L2

- Dropout, Batch Normalization
- Data Augmentation techniques

• Model Interpretation: Understanding model decisions

- Feature importance, LIME, SHAP
- Interpretability vs Performance tradeoffs

Thank You!

Questions & Discussion

≥ sali85@student.gsu.edu

A D > A B > A B > A B > э 29 / 29