Machine Learning for Genomics

Mathematical Foundations: Linear Algebra for Genomics Applications

Sarwan Ali

Department of Computer Science
Georgia State University

Z Linear Algebra Meets Genomics ]

1/32



Today's Learning Journey

@ Introduction

© Vector Spaces and Genomic Data
© Matrices in Genomic Analysis
@ Eigenvalues and Eigenvectors
© Singular Value Decomposition
@ Matrix Factorization Techniques
@ Linear Systems in Genomics

© Computational Considerations
© Case Studies

@ Advanced Topics

@ Practical Implementation

@ Future Directions

@ Summary

2/32



Why Linear Algebra in Genomics?

Genomics generates massive data:

o DNA sequences: 3.2 billion base pairs in human

genome

o Gene expression: 20,000+ genes across tissues Sequence

o Protein interactions: Millions of potential pairs Al

@ Population genetics: Thousands of individuals — ML | Predictions
Linear algebra provides: Gene Expression

° on large matrices Matrix

° techniques

° in high-dimensional data

3/32



Vectors in Genomics

Gene Expression Vector:

81
82
g=1.
8n
where g; represents expression level of gene i
DNA Sequence as Vector: k-mer Frequency Vector:
1 fan
0 far
ATCG — 0 (1) f— | fac
1
fee

One-hot encoding: A=1000, T=0100,
C=0010, G=0001 Frequency of each k-mer in"sequence

4/32



Vector Operations in Genomics

Similarity between gene expression profiles:

g1 27:1 81i82i

ledll-Teall /57, o2\ /582

Cosine Similarity =

Euclidean Distance:

n

d(g1,82) = |lgr — &2l = | D _ (&1 — &2)?
i=1

Application

Used in clustering similar cell types, identifying co-expressed genes, and measuring
evolutionary distance between species.

= = - = = S aeu(



Gene Expression Matrix

Standard Form:

X1 X12 v Xip

Xp1 X2 ot Xop
X = ]

Xnl Xn2 ° Xnp

o Rows: n samples (patients, conditions, time points)
e Columns: p genes/features

o Entry x;: Expression level of gene j in sample i

Typical dimensions:
@ Microarray: n = 100, p =~ 20,000
@ RNA-seq: n= 1,000, p =~ 60,000
@ Single-cell RNA-seq: n = 10,000, p = 30,000

6/32



Sequence Alignment Matrices

Substitution Matrix (e.g., BLOSUM®62):

SAA SAR " SAY

SRA SRR '°° SRY
S = .

SYA SYR - Syy

Dynamic Programming Matrix:
F(i—1,j—1)+s(xi,y;) (match/mismatch)
F(i,j)=maxs F(i—1,j)+d (deletion) (2)
F(i,j—1)+d (insertion)

where s(x;, y;) is the substitution score and d is the gap penalty.

7/32



Covariance and Correlation Matrices

Sample Covariance Matrix:

1 < _ _
C= 1 Z(xi —X)(xi —x)"
i=1
Correlation Matrix:
R, — > i1 (X — %) (xik — %)
jk = = =
V2 O = %)/ 320 (xik — i)
Applications: Properties:
@ Gene co-expression networks o Symmetricc R=RT
o Linkage disequilibrium o Diagonal =1
o Pathway analysis @ Positive semi-definite

8/32



Eigendecomposition Fundamentals

Definition: For square matrix A, if Av = \v for non-zero v:
@ )\ is an eigenvalue

@ v is the corresponding eigenvector

Characteristic Equation:

det(A—Al)=0
Eigendecomposition:
A=QAQ!
where Q contains eigenvectors and A = diag(\1, A2, ..., Ap)

Key Property

For symmetric matrices: A = QAQ' (orthogonal eigenvectors)

9/32



Principal Component Analysis (PCA)

Goal: Find directions of maximum variance in gene expression data

Steps:
O Center the data: X = X — 1x7
@ Compute covariance: C = -L-XTX
@ Eigendecomposition: C = QAQ”

Q Project data: Y = XQ

Principal Components:

P
PCy = Z qjkXj
j=1
Variance Explained:
Ak

Proportion of variance by PC, = DY
=1

10/32



PCA in Genomics Applications

Population Structure:

o PC1, PC2 often correlate with geographic
PC2 (23%)

origin
o Identify population stratification Population B
@ Control for ancestry in GWAS o
Population A
Gene Expression: o’ R
o Reduce 20K genes to top PCs repaion PC1 (45%)

o ldentify expression modules

@ Batch effect detection

Interpretation
First few PCs capture major biological signals; later PCs often represent noise or technical

artifacts.




SVD: The Swiss Army Knife

Any matrix X, can be decomposed as:

X=uUxzv’

where:

® U,xn: Left singular vectors (orthogonal)
@ X, p: Diagonal matrix of singular values

® V,.p: Right singular vectors (orthogonal)
Relationship to Eigendecomposition:
X"™X=vETzVv’ (3)
xXT =uzxu’ (4)

Singular values: o; = \/)\; where \; are eigenvalues of XTX

12/32



SVD Applications in Genomics

1. Dimensionality Reduction:
X, = Uz, V]

Keep only top k singular values

2. Missing Value Imputation:
o lterative SVD for incomplete gene expression matrices
@ Reconstruct missing entries using low-rank approximation

3. Batch Effect Removal:
o ldentify technical variation in top singular vectors
@ Remove batch-associated components

4. Phylogenetic Analysis:
@ SVD of sequence alignment matrices

o ldentify evolutionary relationships
13/32



Non-negative Matrix Factorization (NMF)

Problem: Decompose X ~ WH where W, H > 0
Xnxp ~ Wn><ka><p

Optimization:
min_||X — WH|[%
W,H>0

Genomics Applications:
o Mutational signatures: W = signature strengths, H = signature patterns

o Cell type deconvolution: W = cell type proportions, H = cell type profiles
o Gene modules: W = module activities, H = gene loadings

Advantage

Non-negativity constraint leads to parts-based, interpretable decomposition

™ = = =

14/32



Independent Component Analysis (ICA)

Goal: Find statistically independent components

X =AS
where S contains independent components and A is the mixing matrix.
ICA vs PCA:

e PCA: Maximizes variance (uncorrelated components)

o ICA: Maximizes statistical independence

Genomics Applications:

@ Separate overlapping biological processes
o ldentify regulatory modules
@ Remove technical artifacts

@ Discover hidden factors in expression data

15/32



Solving Linear Systems

General form: Ax=Db

Methods:
© Direct: x = A~!b (when A is invertible)
@ Least squares: x = (ATA)"!ATb (overdetermined)
© Regularized: x = (ATA +\)"!ATb

Genomics Examples:
@ Gene regulatory networks: x = Ax
o Linkage analysis: Solve for recombination frequencies

e Quantitative genetics: y = X3 + €

16 /32



Regularization in High-Dimensional Genomics

The Curse of Dimensionality: p >> n (more genes than samples)
Ridge Regression (L2):

B = argmin|ly — X||3 + A|AII3
LASSO (L1): A

B = argmin [ly = XB]1> + AllBlx

Elastic Net:
ﬁzmngW—xmB+AMMh+Amﬁ%

Applications

Gene selection, SNP association, expression quantitative trait loci (eQTL) mapping

17/32



Big Data Challenges

Scale of Genomic Data:
@ Whole genome sequencing: 200 GB per individual
@ Population studies: 100,000+ individuals
o Single-cell RNA-seq: 1 million+ cells

Computational Strategies:
© Sparse matrices: Most genomic matrices are sparse
@ Randomized algorithms: Approximate SVD, random projection
O Iterative methods: Conjugate gradient, power iteration
Q Parallel computing: GPU acceleration, distributed computing

Memory-Efficient Approaches:
o Block-wise processing
@ Qut-of-core algorithms
o Compressed representations

18/32



Numerical Stability

Common Issues:
o lll-conditioned matrices: High condition number x(A) = Zmax

o Near-singular matrices: Multicollinearity in genomic data
o Floating-point precision: Accumulated errors in iterative algorithms

Solutions:
@ Use SVD instead of eigendecomposition when possible
@ Regularization to improve conditioning
@ Pivoting in matrix factorizations
@ Monitor convergence in iterative methods

Best Practice

Always check the condition number and rank of your matrices before applying linear algebra
operations.

= i = = Tyt

19/32



Case Study 1: Gene Expression Analysis

Dataset: RNA-seq from 500 cancer patients, 20,000 genes

Analysis Pipeline:
© Normalization: Log-transform and center data
@ PCA: Reduce to top 50 components (explaining 80% variance)
© Clustering: K-means on PC space to identify subtypes
© Feature selection: LASSO to identify prognostic genes

Key Linear Algebra Operations:
o Covariance matrix computation: O(p?n)
o Eigendecomposition: O(p?)
@ LASSO optimization: lterative coordinate descent

Results: Identified 3 cancer subtypes with distinct survival patterns using 47 marker genes.

20/32



Case Study 2: Phylogenetic Reconstruction

Problem: Construct evolutionary tree from DNA sequences

Linear Algebra Approach:
@ Create distance matrix D between all sequence pairs
@ Apply PCA to visualize relationships
© Use SVD for dimensionality reduction
@ Construct neighbor-joining tree

3 4

where pj; is the proportion of differing sites (Jukes-Cantor model)

Distance Calculation:

Matrix Properties:
o Symmetricc D=D"
@ Zero diagonal: djj =0

o Satisfies triangle inequality (approximately) N



Case Study 3: GWAS and Population Structure

Challenge: Population stratification can cause false positives

Solution using PCA:
O Compute genetic relationship matrix: G = X);T
@ Eigendecomposition: G = QAQT
© Use top PCs as covariates in association testing

Linear Mixed Model:
y=XB8+Zu+e
where u ~ N(0,02K) and K is the kinship matrix derived from PCs.

Benefits:
@ Controls for population structure
@ Reduces genomic inflation factor A
@ Increases power to detect true associations
Result: Identified 12 genome-wide significant loci after controlling for the top 10 PCs.

22/32



Tensor Decomposition in Multi-way Genomics

Beyond Matrices: Multi-dimensional genomic data
3-way Tensor: Genes x Samples x Conditions

X c RIXJXK
CANDECOMP /PARAFAC (CP) Decomposition:

R
X~ E a,ob,oc,
r=1

Applications:

@ Time-course gene expression across multiple conditions
Multi-tissue eQTL analysis
3D genome organization (Hi-C across cell types)
Pharmacogenomics: Drug x Gene x Patient interactions

Advantage

Captures multi-way interactions that matrix methods cannot detect




Graph Laplacian in Network Biology

Gene Regulatory Networks as Graphs:
L=D-A

where D is degree matrix and A is adjacency matrix.
Normalized Laplacian:
= D—1/2LD—1/2 -1 D—1/2AD—1/2
Spectral Properties:
@ Eigenvalues: 0 =)A1 < A < - < )

@ Number of connected components = multiplicity of eigenvalue 0
@ )\ (Fiedler value) measures connectivity

Applications:
@ Community detection in protein interaction networks
@ Gene module identification
@ Network-based classification

24/32



Random Matrix Theory in Genomics

Null Models for High-Dimensional Data:
For random matrix X, with i.i.d. entries:
Marchenko-Pastur Law: As n,p — oo with p/n — ~:

P()\) — 27?];/0-2 \/()‘-i- — >;\)()‘ — >‘—)

where Ay = 0?(1 4+ ,/7)?
Tracy-Widom Distribution: Largest eigenvalue distribution

Genomics Applications:
@ Determine number of significant PCs in expression data
@ Test for population structure in genetic data
o ldentify batch effects vs. true biological signals
@ Null hypothesis testing in high-dimensional settings

25/32



Python Implementation Example

PCA for Gene Expression Data:

import numpy as np

from sklearn.decomposition import PCA

from sklearn.preprocessing import StandardScaler
import matplotlib.pyplot as plt

# Load gene expression data (genes x samples)

X = np.loadtxt('expression_data.csv’, delimiter=",")
X = X.T # Transpose to samples x genes

# Standardize the data

scaler = StandardScaler ()

X_scaled = scaler.fit_transform (X)
# Apply PCA

pca = PCA()

X_pca = pca.fit_transform (X_scaled)

# Plot explained variance

plt.figure(figsize=(10, 6))

plt.subplot(1, 2, 1)

plt.plot(range(l, 21), pca.explained_variance_ratio_[:20], 'o—")
plt.xlabel (' Principal-Component')
plt.ylabel("Explained-Variance-Ratio")
plt.title('Scree-Plot")

# Plot first two PCs

plt.subplot(1l, 2, 2)

plt.scatter(X_pca[:, 0], X_pca[:, 1])

plt.xlabel (f'PCl-({pca.explained_variance_ratio_[0]:.1%})")
plt.ylabel (f'PC2-({pca.explained_variance_ratio_[1]:.1%})")
plt.title( 'PCA-Projection’)

plt.show ()

26 /32



R Implementation Example

SVD for Missing Value Imputation:

library (bcv)

library (ggplot2)

# Simulate gene expression with missing values

set.seed (123)

n_samples <— 100

n_genes <— 1000

X <— matrix(rnorm(n_samples * n_genes), nrow=n_samples)

# Introduce missing values (10%)

missing _idx <— sample(length(X), 0.1 * length(X))

X_missing <— X

X_missing [missing _idx] <— NA

# lterative SVD imputation

impute_svd <— function (X, rank=10, max_iter=100, tol=le—6) {
# Initialize missing values with column means
X_imputed <— X
for(j in 1:ncol(X)) {

X_imputed[is.na(X[,j]), j] <— mean(X[,j], na.rm=TRUE)}

for(iter in l:max_iter) {

svd_result <— svd(X_imputed)

X_approx <— svd_resultSu[, 1:rank] %%
diag(svd_result$Sd[1:rank]) %%
t(svd_result$v[,1:rank])

# Update missing values

X_new <— X_imputed

X_new[is.na(X)] <— X_approx[is.na(X)]

# Check convergence

if (norm(X_new — X_imputed, 'F') < tol) break

X_imputed <— X_new}

return (X_imputed) 27/32



Emerging Trends

1. Deep Learning Integration:
@ Variational autoencoders for dimensionality reduction
@ Graph neural networks for biological networks
@ Attention mechanisms for sequence analysis
2. Multi-omics Integration:
@ Joint matrix factorization across data types
@ Tensor methods for multi-way omics
@ Network-based integration approaches
3. Single-cell Technologies:
o Handling extreme sparsity and zero-inflation
@ Batch correction in large-scale studies
o Trajectory inference using manifold learning
4. Federated Learning;:
@ Privacy-preserving genomic analysis
@ Distributed matrix computations

@ Secure multi-party protocols 28/32



Challenges and Opportunities

Current Challenges:
@ Scalability: Growing data sizes exceed computational capacity
o Interpretability: Complex models lack biological insight
@ Heterogeneity: Batch effects and technical noise
@ Integration: Combining diverse data types and scales

Future Opportunities:
° Exponential speedup for certain linear algebra operations
° Brain-inspired architectures for genomic analysis
° Real-time genomic analysis in clinical settings
° Interpretable machine learning for genomics

The future of genomics lies in developing mathematically principled, computationally efficient,
and biologically interpretable methods.

29/32



Key Takeaways

Linear Algebra is Fundamental:
@ Vectors and matrices naturally represent genomic data
@ Eigendecomposition and SVD reveal hidden structure
© Matrix factorization enables interpretable analysis
@ Linear systems model biological processes

Practical Applications:
o Dimensionality reduction (PCA, SVD)

Pattern recognition (clustering, classification)

Network analysis (graph Laplacian)

Regularized regression (LASSO, Ridge)

Computational Considerations:

Numerical stability and conditioning

Scalability for big genomic data

Memory-efficient algorithms

Parallel and distributed computing

30/32



Recommended Reading:
o Hastie, T. et al. " The Elements of Statistical Learning”

e Gentleman, R. et al. "Bioinformatics and Computational Biology Solutions Using R”
o Ewens, W.J. "Mathematical Population Genetics”

Software Tools:
@ Python: NumPy, SciPy, scikit-learn, pandas
@ R: Bioconductor, limma, edgeR, DESeq2
o Specialized: PLINK, GCTA, GEMMA for GWAS

Practice Datasets:
@ Gene Expression Omnibus (GEO)
@ The Cancer Genome Atlas (TCGA)
@ 1000 Genomes Project
o UK Biobank

31/32



Questions?

Contact: sali85@student.gsu.edu

32/32



	Introduction
	Vector Spaces and Genomic Data
	Matrices in Genomic Analysis
	Eigenvalues and Eigenvectors
	Singular Value Decomposition
	Matrix Factorization Techniques
	Linear Systems in Genomics
	Computational Considerations
	Case Studies
	Advanced Topics
	Practical Implementation
	Future Directions
	Summary

