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Why Linear Algebra in Genomics?

Genomics generates massive data:

o DNA sequences: 3.2 billion base pairs in human

genome

o Gene expression: 20,000+ genes across tissues Sequence

o Protein interactions: Millions of potential pairs Al

@ Population genetics: Thousands of individuals — ML | Predictions
Linear algebra provides: Gene Expression

° on large matrices Matrix

° techniques

° in high-dimensional data
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Vectors in Genomics

Gene Expression Vector:
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Vector Operations in Genomics

Similarity between gene expression profiles:

g1 27:1 81i82i

ledll-Teall /57, o2\ /582

Cosine Similarity =

Euclidean Distance:

n

d(g1,82) = |lgr — &2l = | D _ (&1 — &2)?
i=1

Application

Used in clustering similar cell types, identifying co-expressed genes, and measuring
evolutionary distance between species.
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Gene Expression Matrix

Standard Form:

X1 X12 v Xip

Xp1 X2 ot Xop
X = ]

Xnl Xn2 ° Xnp

o Rows: n samples (patients, conditions, time points)
e Columns: p genes/features

o Entry x;: Expression level of gene j in sample i

Typical dimensions:
@ Microarray: n = 100, p =~ 20,000
@ RNA-seq: n= 1,000, p =~ 60,000
@ Single-cell RNA-seq: n = 10,000, p = 30,000
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Sequence Alignment Matrices

Substitution Matrix (e.g., BLOSUM®62):

SAA SAR " SAY

SRA SRR '°° SRY
S = .

SYA SYR - Syy

Dynamic Programming Matrix:
F(i—1,j—1)+s(xi,y;) (match/mismatch)
F(i,j)=maxs F(i—1,j)+d (deletion) (2)
F(i,j—1)+d (insertion)

where s(x;, y;) is the substitution score and d is the gap penalty.
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Covariance and Correlation Matrices

Sample Covariance Matrix:

1 < _ _
C= 1 Z(xi —X)(xi —x)"
i=1
Correlation Matrix:
R, — > i1 (X — %) (xik — %)
jk = = =
V2 O = %)/ 320 (xik — i)
Applications: Properties:
@ Gene co-expression networks o Symmetricc R=RT
o Linkage disequilibrium o Diagonal =1
o Pathway analysis @ Positive semi-definite
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Eigendecomposition Fundamentals

Definition: For square matrix A, if Av = \v for non-zero v:
@ )\ is an eigenvalue

@ v is the corresponding eigenvector

Characteristic Equation:

det(A—Al)=0
Eigendecomposition:
A=QAQ!
where Q contains eigenvectors and A = diag(\1, A2, ..., Ap)

Key Property

For symmetric matrices: A = QAQ' (orthogonal eigenvectors)
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Principal Component Analysis (PCA)

Goal: Find directions of maximum variance in gene expression data

Steps:
O Center the data: X = X — 1x7
@ Compute covariance: C = -L-XTX
@ Eigendecomposition: C = QAQ”

Q Project data: Y = XQ

Principal Components:

P
PCy = Z qjkXj
j=1
Variance Explained:
Ak

Proportion of variance by PC, = DY
=1
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PCA in Genomics Applications

Population Structure:

o PC1, PC2 often correlate with geographic
PC2 (23%)

origin
o Identify population stratification Population B
@ Control for ancestry in GWAS o
Population A
Gene Expression: o’ R
o Reduce 20K genes to top PCs repaion PC1 (45%)

o ldentify expression modules

@ Batch effect detection

Interpretation
First few PCs capture major biological signals; later PCs often represent noise or technical

artifacts.




SVD: The Swiss Army Knife

Any matrix X, can be decomposed as:

X=uUxzv’

where:

® U,xn: Left singular vectors (orthogonal)
@ X, p: Diagonal matrix of singular values

® V,.p: Right singular vectors (orthogonal)
Relationship to Eigendecomposition:
X"™X=vETzVv’ (3)
xXT =uzxu’ (4)

Singular values: o; = \/)\; where \; are eigenvalues of XTX
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SVD Applications in Genomics

1. Dimensionality Reduction:
X, = Uz, V]

Keep only top k singular values

2. Missing Value Imputation:
o lterative SVD for incomplete gene expression matrices
@ Reconstruct missing entries using low-rank approximation

3. Batch Effect Removal:
o ldentify technical variation in top singular vectors
@ Remove batch-associated components

4. Phylogenetic Analysis:
@ SVD of sequence alignment matrices

o ldentify evolutionary relationships
13/32



Non-negative Matrix Factorization (NMF)

Problem: Decompose X ~ WH where W, H > 0
Xnxp ~ Wn><ka><p

Optimization:
min_||X — WH|[%
W,H>0

Genomics Applications:
o Mutational signatures: W = signature strengths, H = signature patterns

o Cell type deconvolution: W = cell type proportions, H = cell type profiles
o Gene modules: W = module activities, H = gene loadings

Advantage

Non-negativity constraint leads to parts-based, interpretable decomposition

™ = = =
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Independent Component Analysis (ICA)

Goal: Find statistically independent components

X =AS
where S contains independent components and A is the mixing matrix.
ICA vs PCA:

e PCA: Maximizes variance (uncorrelated components)

o ICA: Maximizes statistical independence

Genomics Applications:

@ Separate overlapping biological processes
o ldentify regulatory modules
@ Remove technical artifacts

@ Discover hidden factors in expression data
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Solving Linear Systems

General form: Ax=Db

Methods:
© Direct: x = A~!b (when A is invertible)
@ Least squares: x = (ATA)"!ATb (overdetermined)
© Regularized: x = (ATA +\)"!ATb

Genomics Examples:
@ Gene regulatory networks: x = Ax
o Linkage analysis: Solve for recombination frequencies

e Quantitative genetics: y = X3 + €
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Regularization in High-Dimensional Genomics

The Curse of Dimensionality: p >> n (more genes than samples)
Ridge Regression (L2):

B = argmin|ly — X||3 + A|AII3
LASSO (L1): A

B = argmin [ly = XB]1> + AllBlx

Elastic Net:
ﬁzmngW—xmB+AMMh+Amﬁ%

Applications

Gene selection, SNP association, expression quantitative trait loci (eQTL) mapping
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Big Data Challenges

Scale of Genomic Data:
@ Whole genome sequencing: 200 GB per individual
@ Population studies: 100,000+ individuals
o Single-cell RNA-seq: 1 million+ cells

Computational Strategies:
© Sparse matrices: Most genomic matrices are sparse
@ Randomized algorithms: Approximate SVD, random projection
O Iterative methods: Conjugate gradient, power iteration
Q Parallel computing: GPU acceleration, distributed computing

Memory-Efficient Approaches:
o Block-wise processing
@ Qut-of-core algorithms
o Compressed representations
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Numerical Stability

Common Issues:
o lll-conditioned matrices: High condition number x(A) = Zmax

o Near-singular matrices: Multicollinearity in genomic data
o Floating-point precision: Accumulated errors in iterative algorithms

Solutions:
@ Use SVD instead of eigendecomposition when possible
@ Regularization to improve conditioning
@ Pivoting in matrix factorizations
@ Monitor convergence in iterative methods

Best Practice

Always check the condition number and rank of your matrices before applying linear algebra
operations.

= i = = Tyt
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Case Study 1: Gene Expression Analysis

Dataset: RNA-seq from 500 cancer patients, 20,000 genes

Analysis Pipeline:
© Normalization: Log-transform and center data
@ PCA: Reduce to top 50 components (explaining 80% variance)
© Clustering: K-means on PC space to identify subtypes
© Feature selection: LASSO to identify prognostic genes

Key Linear Algebra Operations:
o Covariance matrix computation: O(p?n)
o Eigendecomposition: O(p?)
@ LASSO optimization: lterative coordinate descent

Results: Identified 3 cancer subtypes with distinct survival patterns using 47 marker genes.
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Case Study 2: Phylogenetic Reconstruction

Problem: Construct evolutionary tree from DNA sequences

Linear Algebra Approach:
@ Create distance matrix D between all sequence pairs
@ Apply PCA to visualize relationships
© Use SVD for dimensionality reduction
@ Construct neighbor-joining tree

3 4

where pj; is the proportion of differing sites (Jukes-Cantor model)

Distance Calculation:

Matrix Properties:
o Symmetricc D=D"
@ Zero diagonal: djj =0

o Satisfies triangle inequality (approximately) N



Case Study 3: GWAS and Population Structure

Challenge: Population stratification can cause false positives

Solution using PCA:
O Compute genetic relationship matrix: G = X);T
@ Eigendecomposition: G = QAQT
© Use top PCs as covariates in association testing

Linear Mixed Model:
y=XB8+Zu+e
where u ~ N(0,02K) and K is the kinship matrix derived from PCs.

Benefits:
@ Controls for population structure
@ Reduces genomic inflation factor A
@ Increases power to detect true associations
Result: Identified 12 genome-wide significant loci after controlling for the top 10 PCs.
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Tensor Decomposition in Multi-way Genomics

Beyond Matrices: Multi-dimensional genomic data
3-way Tensor: Genes x Samples x Conditions

X c RIXJXK
CANDECOMP /PARAFAC (CP) Decomposition:

R
X~ E a,ob,oc,
r=1

Applications:

@ Time-course gene expression across multiple conditions
Multi-tissue eQTL analysis
3D genome organization (Hi-C across cell types)
Pharmacogenomics: Drug x Gene x Patient interactions

Advantage

Captures multi-way interactions that matrix methods cannot detect




Graph Laplacian in Network Biology

Gene Regulatory Networks as Graphs:
L=D-A

where D is degree matrix and A is adjacency matrix.
Normalized Laplacian:
= D—1/2LD—1/2 -1 D—1/2AD—1/2
Spectral Properties:
@ Eigenvalues: 0 =)A1 < A < - < )

@ Number of connected components = multiplicity of eigenvalue 0
@ )\ (Fiedler value) measures connectivity

Applications:
@ Community detection in protein interaction networks
@ Gene module identification
@ Network-based classification
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Random Matrix Theory in Genomics

Null Models for High-Dimensional Data:
For random matrix X, with i.i.d. entries:
Marchenko-Pastur Law: As n,p — oo with p/n — ~:

P()\) — 27?];/0-2 \/()‘-i- — >;\)()‘ — >‘—)

where Ay = 0?(1 4+ ,/7)?
Tracy-Widom Distribution: Largest eigenvalue distribution

Genomics Applications:
@ Determine number of significant PCs in expression data
@ Test for population structure in genetic data
o ldentify batch effects vs. true biological signals
@ Null hypothesis testing in high-dimensional settings
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Python Implementation Example

PCA for Gene Expression Data:

import numpy as np

from sklearn.decomposition import PCA

from sklearn.preprocessing import StandardScaler
import matplotlib.pyplot as plt

# Load gene expression data (genes x samples)

X = np.loadtxt('expression_data.csv’, delimiter=",")
X = X.T # Transpose to samples x genes

# Standardize the data

scaler = StandardScaler ()

X_scaled = scaler.fit_transform (X)
# Apply PCA

pca = PCA()

X_pca = pca.fit_transform (X_scaled)

# Plot explained variance

plt.figure(figsize=(10, 6))

plt.subplot(1, 2, 1)

plt.plot(range(l, 21), pca.explained_variance_ratio_[:20], 'o—")
plt.xlabel (' Principal-Component')
plt.ylabel("Explained-Variance-Ratio")
plt.title('Scree-Plot")

# Plot first two PCs

plt.subplot(1l, 2, 2)

plt.scatter(X_pca[:, 0], X_pca[:, 1])

plt.xlabel (f'PCl-({pca.explained_variance_ratio_[0]:.1%})")
plt.ylabel (f'PC2-({pca.explained_variance_ratio_[1]:.1%})")
plt.title( 'PCA-Projection’)

plt.show ()
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R Implementation Example

SVD for Missing Value Imputation:

library (bcv)

library (ggplot2)

# Simulate gene expression with missing values

set.seed (123)

n_samples <— 100

n_genes <— 1000

X <— matrix(rnorm(n_samples * n_genes), nrow=n_samples)

# Introduce missing values (10%)

missing _idx <— sample(length(X), 0.1 * length(X))

X_missing <— X

X_missing [missing _idx] <— NA

# lterative SVD imputation

impute_svd <— function (X, rank=10, max_iter=100, tol=le—6) {
# Initialize missing values with column means
X_imputed <— X
for(j in 1:ncol(X)) {

X_imputed[is.na(X[,j]), j] <— mean(X[,j], na.rm=TRUE)}

for(iter in l:max_iter) {

svd_result <— svd(X_imputed)

X_approx <— svd_resultSu[, 1:rank] %%
diag(svd_result$Sd[1:rank]) %%
t(svd_result$v[,1:rank])

# Update missing values

X_new <— X_imputed

X_new[is.na(X)] <— X_approx[is.na(X)]

# Check convergence

if (norm(X_new — X_imputed, 'F') < tol) break

X_imputed <— X_new}

return (X_imputed) 27/32



Emerging Trends

1. Deep Learning Integration:
@ Variational autoencoders for dimensionality reduction
@ Graph neural networks for biological networks
@ Attention mechanisms for sequence analysis
2. Multi-omics Integration:
@ Joint matrix factorization across data types
@ Tensor methods for multi-way omics
@ Network-based integration approaches
3. Single-cell Technologies:
o Handling extreme sparsity and zero-inflation
@ Batch correction in large-scale studies
o Trajectory inference using manifold learning
4. Federated Learning;:
@ Privacy-preserving genomic analysis
@ Distributed matrix computations

@ Secure multi-party protocols 28/32



Challenges and Opportunities

Current Challenges:
@ Scalability: Growing data sizes exceed computational capacity
o Interpretability: Complex models lack biological insight
@ Heterogeneity: Batch effects and technical noise
@ Integration: Combining diverse data types and scales

Future Opportunities:
° Exponential speedup for certain linear algebra operations
° Brain-inspired architectures for genomic analysis
° Real-time genomic analysis in clinical settings
° Interpretable machine learning for genomics

The future of genomics lies in developing mathematically principled, computationally efficient,
and biologically interpretable methods.
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Key Takeaways

Linear Algebra is Fundamental:
@ Vectors and matrices naturally represent genomic data
@ Eigendecomposition and SVD reveal hidden structure
© Matrix factorization enables interpretable analysis
@ Linear systems model biological processes

Practical Applications:
o Dimensionality reduction (PCA, SVD)

Pattern recognition (clustering, classification)

Network analysis (graph Laplacian)

Regularized regression (LASSO, Ridge)

Computational Considerations:

Numerical stability and conditioning

Scalability for big genomic data

Memory-efficient algorithms

Parallel and distributed computing
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Recommended Reading:
o Hastie, T. et al. " The Elements of Statistical Learning”

e Gentleman, R. et al. "Bioinformatics and Computational Biology Solutions Using R”
o Ewens, W.J. "Mathematical Population Genetics”

Software Tools:
@ Python: NumPy, SciPy, scikit-learn, pandas
@ R: Bioconductor, limma, edgeR, DESeq2
o Specialized: PLINK, GCTA, GEMMA for GWAS

Practice Datasets:
@ Gene Expression Omnibus (GEO)
@ The Cancer Genome Atlas (TCGA)
@ 1000 Genomes Project
o UK Biobank
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Questions?

Contact: sali85@student.gsu.edu
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