Machine Learning for Genomics

Mathematical Foundations: Linear Algebra for Genomics Applications

Sarwan Ali

Department of Computer Science Georgia State University

Today's Learning Journey

- Introduction
- Vector Spaces and Genomic Data
- Matrices in Genomic Analysis
- 4 Eigenvalues and Eigenvectors
- 5 Singular Value Decomposition
- Matrix Factorization Techniques
- Linear Systems in Genomics
- 8 Computational Considerations
- Case Studies
- Advanced Topics
- Practical Implementation
- Future Directions
- Summary

Why Linear Algebra in Genomics?

Genomics generates massive data:

- DNA sequences: 3.2 billion base pairs in human genome
- Gene expression: 20,000+ genes across tissues
- Protein interactions: Millions of potential pairs
- Population genetics: Thousands of individuals

Linear algebra provides:

- Efficient computation on large matrices
- Dimensionality reduction techniques
- Pattern recognition in high-dimensional data

Vectors in Genomics

Gene Expression Vector:

$$\mathbf{g} = egin{pmatrix} g_1 \ g_2 \ dots \ g_n \end{pmatrix}$$

where g_i represents expression level of gene i

DNA Sequence as Vector:

k-mer Frequency Vector:
$$\mathbf{f} = \begin{pmatrix} f_{AA} \\ f_{AT} \\ f_{AC} \end{pmatrix}$$

 $\mathbf{f} = \begin{pmatrix} f_{AA} \\ f_{AT} \\ f_{AC} \\ \vdots \\ f_{CC} \end{pmatrix}$ $\mathsf{ATCG} \to \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$

One-hot encoding: A=1000, T=0100. C=0010. G=0001

Vector Operations in Genomics

Similarity between gene expression profiles:

Cosine Similarity =
$$\frac{\mathbf{g_1} \cdot \mathbf{g_2}}{||\mathbf{g_1}|| \cdot ||\mathbf{g_2}||} = \frac{\sum_{i=1}^{n} g_{1i}g_{2i}}{\sqrt{\sum_{i=1}^{n} g_{1i}^2} \sqrt{\sum_{i=1}^{n} g_{2i}^2}}$$

Euclidean Distance:

$$d(\mathbf{g_1}, \mathbf{g_2}) = ||\mathbf{g_1} - \mathbf{g_2}|| = \sqrt{\sum_{i=1}^{n} (g_{1i} - g_{2i})^2}$$

Application

Used in clustering similar cell types, identifying co-expressed genes, and measuring evolutionary distance between species.

Gene Expression Matrix

Standard Form:

$$\mathbf{X} = \begin{pmatrix} x_{11} & x_{12} & \cdots & x_{1p} \\ x_{21} & x_{22} & \cdots & x_{2p} \\ \vdots & \vdots & \ddots & \vdots \\ x_{n1} & x_{n2} & \cdots & x_{np} \end{pmatrix}$$

- Rows: n samples (patients, conditions, time points)
- **Columns**: *p* genes/features
- Entry x_{ij} : Expression level of gene j in sample i

Typical dimensions:

- Microarray: $n \approx 100$, $p \approx 20,000$
- RNA-seq: $n \approx 1,000$, $p \approx 60,000$
- Single-cell RNA-seq: $n \approx 10,000$, $p \approx 30,000$

Sequence Alignment Matrices

Substitution Matrix (e.g., BLOSUM62):

$$\mathbf{S} = egin{pmatrix} s_{AA} & s_{AR} & \cdots & s_{AY} \ s_{RA} & s_{RR} & \cdots & s_{RY} \ dots & dots & \ddots & dots \ s_{YA} & s_{YR} & \cdots & s_{YY} \end{pmatrix}$$

Dynamic Programming Matrix:

$$F(i,j) = \max \begin{cases} F(i-1,j-1) + s(x_i,y_j) & (\mathsf{match/mismatch}) \\ F(i-1,j) + d & (\mathsf{deletion}) \\ F(i,j-1) + d & (\mathsf{insertion}) \end{cases} \tag{2}$$

where $s(x_i, y_j)$ is the substitution score and d is the gap penalty.

Covariance and Correlation Matrices

Sample Covariance Matrix:

$$\mathbf{C} = \frac{1}{n-1} \sum_{i=1}^{n} (\mathbf{x_i} - \bar{\mathbf{x}}) (\mathbf{x_i} - \bar{\mathbf{x}})^T$$

Correlation Matrix:

$$\mathbf{R}_{jk} = \frac{\sum_{i=1}^{n} (x_{ij} - \bar{x}_j)(x_{ik} - \bar{x}_k)}{\sqrt{\sum_{i=1}^{n} (x_{ij} - \bar{x}_j)^2} \sqrt{\sum_{i=1}^{n} (x_{ik} - \bar{x}_k)^2}}$$

Applications:

- Gene co-expression networks
- Linkage disequilibrium
- Pathway analysis

Properties:

- Symmetric: $\mathbf{R} = \mathbf{R}^T$
- Diagonal = 1
- Positive semi-definite

Eigendecomposition Fundamentals

Definition: For square matrix **A**, if $Av = \lambda v$ for non-zero **v**:

- \bullet λ is an eigenvalue
- v is the corresponding eigenvector

Characteristic Equation:

$$\det(\mathbf{A} - \lambda \mathbf{I}) = 0$$

Eigendecomposition:

$$A = Q \Lambda Q^{-1}$$

where **Q** contains eigenvectors and $\Lambda = \text{diag}(\lambda_1, \lambda_2, \dots, \lambda_n)$

Key Property

For symmetric matrices: $\mathbf{A} = \mathbf{Q} \mathbf{\Lambda} \mathbf{Q}^T$ (orthogonal eigenvectors)

Principal Component Analysis (PCA)

Goal: Find directions of maximum variance in gene expression data

Steps:

- Center the data: $\tilde{\mathbf{X}} = \mathbf{X} \mathbf{1}\bar{\mathbf{x}}^T$
- ② Compute covariance: $\mathbf{C} = \frac{1}{n-1} \tilde{\mathbf{X}}^T \tilde{\mathbf{X}}$
- **3** Eigendecomposition: $\mathbf{C} = \mathbf{Q} \mathbf{\Lambda} \mathbf{Q}^T$
- Project data: $\mathbf{Y} = \tilde{\mathbf{X}}\mathbf{Q}$

Principal Components:

$$PC_k = \sum_{i=1}^p q_{jk} x_j$$

Variance Explained:

Proportion of variance by $PC_k = \frac{\lambda_k}{\sum_{i=1}^p \lambda_i}$

PCA in Genomics Applications

Population Structure:

- PC1, PC2 often correlate with geographic origin
- Identify population stratification
- Control for ancestry in GWAS

Gene Expression:

- Reduce 20K genes to top PCs
- Identify expression modules
- Batch effect detection

Interpretation

First few PCs capture major biological signals; later PCs often represent noise or technical artifacts.

SVD: The Swiss Army Knife

Any matrix X_{$n \times p$} can be decomposed as:

$$X = U\Sigma V^T$$

where:

- $\mathbf{U}_{n\times n}$: Left singular vectors (orthogonal)
- $\Sigma_{n \times p}$: Diagonal matrix of singular values
- $V_{p \times p}$: Right singular vectors (orthogonal)

Relationship to Eigendecomposition:

$$\mathbf{X}^T \mathbf{X} = \mathbf{V} \mathbf{\Sigma}^T \mathbf{\Sigma} \mathbf{V}^T$$

 $\mathbf{X} \mathbf{X}^T = \mathbf{U} \mathbf{\Sigma} \mathbf{\Sigma}^T \mathbf{U}^T$

Singular values:
$$\sigma_i = \sqrt{\lambda_i}$$
 where λ_i are eigenvalues of $\mathbf{X}^T \mathbf{X}$

(3)

(4)

SVD Applications in Genomics

1. Dimensionality Reduction:

$$\mathbf{X}_k = \mathbf{U}_k \mathbf{\Sigma}_k \mathbf{V}_k^T$$

Keep only top k singular values

2. Missing Value Imputation:

- Iterative SVD for incomplete gene expression matrices
- Reconstruct missing entries using low-rank approximation

3. Batch Effect Removal:

- Identify technical variation in top singular vectors
- Remove batch-associated components

4. Phylogenetic Analysis:

- SVD of sequence alignment matrices
- Identify evolutionary relationships

Non-negative Matrix Factorization (NMF)

Problem: Decompose $X \approx WH$ where $W, H \geq 0$

$$X_{n \times p} \approx W_{n \times k} H_{k \times p}$$

Optimization:

$$\min_{\mathbf{W},\mathbf{H}>0}||\mathbf{X}-\mathbf{W}\mathbf{H}||_F^2$$

Genomics Applications:

- Mutational signatures: W = signature strengths, H = signature patterns
- Cell type deconvolution: W = cell type proportions, H = cell type profiles
- ullet Gene modules: old W= module activities, old H= gene loadings

Advantage

Non-negativity constraint leads to parts-based, interpretable decomposition

Independent Component Analysis (ICA)

Goal: Find statistically independent components

$$X = AS$$

where **S** contains independent components and **A** is the mixing matrix.

ICA vs PCA:

- PCA: Maximizes variance (uncorrelated components)
- ICA: Maximizes statistical independence

Genomics Applications:

- Separate overlapping biological processes
- Identify regulatory modules
- Remove technical artifacts
- Discover hidden factors in expression data

Solving Linear Systems

General form: Ax = b

Methods:

- **1 Direct:** $\mathbf{x} = \mathbf{A}^{-1}\mathbf{b}$ (when **A** is invertible)
- **2** Least squares: $\mathbf{x} = (\mathbf{A}^T \mathbf{A})^{-1} \mathbf{A}^T \mathbf{b}$ (overdetermined)
- **3** Regularized: $\mathbf{x} = (\mathbf{A}^T \mathbf{A} + \lambda \mathbf{I})^{-1} \mathbf{A}^T \mathbf{b}$

Genomics Examples:

- Gene regulatory networks: $\dot{x} = Ax$
- Linkage analysis: Solve for recombination frequencies
- Quantitative genetics: $y = X\beta + \epsilon$

Regularization in High-Dimensional Genomics

The Curse of Dimensionality: p >> n (more genes than samples)

Ridge Regression (L2):

$$\hat{\boldsymbol{\beta}} = \arg\min_{\boldsymbol{\beta}} ||\mathbf{y} - \mathbf{X}\boldsymbol{\beta}||_2^2 + \lambda ||\boldsymbol{\beta}||_2^2$$

LASSO (L1):

$$\hat{oldsymbol{eta}} = rg \min_{oldsymbol{eta}} ||\mathbf{y} - \mathbf{X} oldsymbol{eta}||_2^2 + \lambda ||oldsymbol{eta}||_1$$

Elastic Net:

$$\hat{\boldsymbol{\beta}} = \arg\min_{\boldsymbol{\beta}} ||\mathbf{y} - \mathbf{X}\boldsymbol{\beta}||_2^2 + \lambda_1 ||\boldsymbol{\beta}||_1 + \lambda_2 ||\boldsymbol{\beta}||_2^2$$

Applications

Gene selection, SNP association, expression quantitative trait loci (eQTL) mapping

Big Data Challenges

Scale of Genomic Data:

- Whole genome sequencing: 200 GB per individual
- Population studies: 100,000+ individuals
- Single-cell RNA-seq: 1 million+ cells

Computational Strategies:

- Sparse matrices: Most genomic matrices are sparse
- Randomized algorithms: Approximate SVD, random projection
- **1 Iterative methods:** Conjugate gradient, power iteration
- Parallel computing: GPU acceleration, distributed computing

Memory-Efficient Approaches:

- Block-wise processing
- Out-of-core algorithms
- Compressed representations

Numerical Stability

Common Issues:

- ullet III-conditioned matrices: High condition number $\kappa({f A})=rac{\sigma_{
 m max}}{\sigma_{
 m min}}$
- Near-singular matrices: Multicollinearity in genomic data
- Floating-point precision: Accumulated errors in iterative algorithms

Solutions:

- Use SVD instead of eigendecomposition when possible
- Regularization to improve conditioning
- Pivoting in matrix factorizations
- Monitor convergence in iterative methods

Best Practice

Always check the condition number and rank of your matrices before applying linear algebra operations.

Case Study 1: Gene Expression Analysis

Dataset: RNA-seq from 500 cancer patients, 20,000 genes

Analysis Pipeline:

- Normalization: Log-transform and center data
- **PCA:** Reduce to top 50 components (explaining 80% variance)
- Clustering: K-means on PC space to identify subtypes
- Feature selection: LASSO to identify prognostic genes

Key Linear Algebra Operations:

- Covariance matrix computation: $O(p^2n)$
- Eigendecomposition: $O(p^3)$
- LASSO optimization: Iterative coordinate descent

Results: Identified 3 cancer subtypes with distinct survival patterns using 47 marker genes.

Case Study 2: Phylogenetic Reconstruction

Problem: Construct evolutionary tree from DNA sequences

Linear Algebra Approach:

- Create distance matrix D between all sequence pairs
- Apply PCA to visualize relationships
- Use SVD for dimensionality reduction
- Construct neighbor-joining tree

Distance Calculation:

$$d_{ij}=-rac{3}{4}\ln\left(1-rac{4}{3}
ho_{ij}
ight)$$

where p_{ij} is the proportion of differing sites (Jukes-Cantor model)

Matrix Properties:

- Symmetric: $\mathbf{D} = \mathbf{D}^T$
- Zero diagonal: $d_{ii} = 0$
- Satisfies triangle inequality (approximately)

Case Study 3: GWAS and Population Structure

Challenge: Population stratification can cause false positives

Solution using PCA:

- Compute genetic relationship matrix: $\mathbf{G} = \frac{\mathbf{X}\mathbf{X}^T}{p}$
- **②** Eigendecomposition: $\mathbf{G} = \mathbf{Q} \mathbf{\Lambda} \mathbf{Q}^T$
- Use top PCs as covariates in association testing

Linear Mixed Model:

$$y = X\beta + Zu + \epsilon$$

where $\mathbf{u} \sim N(0, \sigma_g^2 \mathbf{K})$ and \mathbf{K} is the kinship matrix derived from PCs.

Benefits:

- Controls for population structure
- Reduces genomic inflation factor λ
- Increases power to detect true associations

Result: Identified 12 genome-wide significant loci after controlling for the top 10 PCs,

Tensor Decomposition in Multi-way Genomics

Beyond Matrices: Multi-dimensional genomic data **3-way Tensor:** Genes \times Samples \times Conditions

$$\mathcal{X} \in \mathbb{R}^{I \times J \times K}$$

CANDECOMP/PARAFAC (CP) Decomposition:

$$\mathcal{X} pprox \sum_{r=1}^{R} \mathbf{a}_r \circ \mathbf{b}_r \circ \mathbf{c}_r$$

Applications:

- Time-course gene expression across multiple conditions
- Multi-tissue eQTL analysis
- 3D genome organization (Hi-C across cell types)
- ullet Pharmacogenomics: Drug imes Gene imes Patient interactions

Advantage

Captures multi-way interactions that matrix methods cannot detect

Graph Laplacian in Network Biology

Gene Regulatory Networks as Graphs:

$$L = D - A$$

where **D** is degree matrix and **A** is adjacency matrix.

Normalized Laplacian:

$$\mathcal{L} = \mathsf{D}^{-1/2}\mathsf{L}\mathsf{D}^{-1/2} = \mathsf{I} - \mathsf{D}^{-1/2}\mathsf{A}\mathsf{D}^{-1/2}$$

Spectral Properties:

- Eigenvalues: $0 = \lambda_1 \le \lambda_2 \le \cdots \le \lambda_n$
- Number of connected components = multiplicity of eigenvalue 0
- λ_2 (Fiedler value) measures connectivity

Applications:

- Community detection in protein interaction networks
- Gene module identification
- Network-based classification

Random Matrix Theory in Genomics

Null Models for High-Dimensional Data:

For random matrix $\mathbf{X}_{n \times p}$ with i.i.d. entries:

Marchenko-Pastur Law: As $n, p \to \infty$ with $p/n \to \gamma$:

$$ho(\lambda) = rac{1}{2\pi\gamma\sigma^2}rac{\sqrt{(\lambda_+ - \lambda)(\lambda - \lambda_-)}}{\lambda}$$

where
$$\lambda_{\pm}=\sigma^2(1\pm\sqrt{\gamma})^2$$

Tracy-Widom Distribution: Largest eigenvalue distribution

Genomics Applications:

- Determine number of significant PCs in expression data
- Test for population structure in genetic data
- Identify batch effects vs. true biological signals
- Null hypothesis testing in high-dimensional settings

Python Implementation Example

PCA for Gene Expression Data:

```
import numpy as np
from sklearn decomposition import PCA
from sklearn preprocessing import StandardScaler
import matplotlib pyplot as plt
# Load gene expression data (genes x samples)
X = np.loadtxt('expression_data.csv', delimiter=',')
X = X.T # Transpose to samples x genes
# Standardize the data
scaler = StandardScaler()
X_scaled = scaler.fit_transform(X)
# Apply PCA
pca = PCA()
X_{pca} = pca.fit_{transform}(X_{scaled})
# Plot explained variance
plt.figure(figsize=(10, 6))
plt.subplot(1, 2, 1)
plt.plot(range(1, 21), pca.explained_variance_ratio_[:20], 'o-')
plt.xlabel('Principal-Component')
plt. vlabel('Explained - Variance - Ratio')
plt.title('Scree-Plot')
# Plot first two PCs
plt.subplot(1, 2, 2)
plt.scatter(X_pca[:, 0], X_pca[:, 1])
plt.xlabel(f'PC1-({pca.explained_variance_ratio_[0]:.1%})')
plt. vlabel (f'PC2-({pca.explained_variance_ratio_[1]:.1%})')
plt. title ('PCA-Projection')
plt.show()
```

R Implementation Example

SVD for Missing Value Imputation:

```
library (bcv)
library (ggplot2)
# Simulate gene expression with missing values
set . seed (123)
n_samples < -100
n_genes < -1000
X \leftarrow matrix(rnorm(n_samples * n_genes), nrow=n_samples)
# Introduce missing values (10%)
missing_idx \leftarrow sample(length(X), 0.1 * length(X))
X_{-}missing <-X
X_{\text{missing}}[\text{missing}_{\text{id}} \times] < - NA
# Iterative SVD imputation
impute_svd < function(X, rank=10, max_iter=100, tol=1e-6)
  # Initialize missing values with column means
  X_{\text{-imputed}} \leftarrow X
  for(i in 1:ncol(X)) {
    X_{imputed}[is.na(X[,j]), j] \leftarrow mean(X[,j], na.rm=TRUE)
  for(iter in 1:max_iter) {
    svd_result <- svd(X_imputed)</pre>
    X_approx <- svd_result$u[.1:rank] %*%
                  diag(svd_result$d[1:rank]) %*%
                  t(svd_result$v[.1:rank])
    # Update missing values
    X_new <- X_imputed
    X_{new}[is.na(X)] \leftarrow X_{approx}[is.na(X)]
    # Check convergence
    if(norm(X_new - X_imputed, 'F') < tol) break
    X_{imputed} \leftarrow X_{new}
  return (X_imputed)
```

Emerging Trends

1. Deep Learning Integration:

- Variational autoencoders for dimensionality reduction
- Graph neural networks for biological networks
- Attention mechanisms for sequence analysis

2. Multi-omics Integration:

- Joint matrix factorization across data types
- Tensor methods for multi-way omics
- Network-based integration approaches

3. Single-cell Technologies:

- Handling extreme sparsity and zero-inflation
- Batch correction in large-scale studies
- Trajectory inference using manifold learning

4. Federated Learning:

- Privacy-preserving genomic analysis
- Distributed matrix computations
- Secure multi-party protocols

Challenges and Opportunities

Current Challenges:

- Scalability: Growing data sizes exceed computational capacity
- Interpretability: Complex models lack biological insight
- Heterogeneity: Batch effects and technical noise
- Integration: Combining diverse data types and scales

Future Opportunities:

- Quantum computing: Exponential speedup for certain linear algebra operations
- Neuromorphic computing: Brain-inspired architectures for genomic analysis
- Edge computing: Real-time genomic analysis in clinical settings
- Explainable Al: Interpretable machine learning for genomics

Key Insight

The future of genomics lies in developing mathematically principled, computationally efficient, and biologically interpretable methods.

Key Takeaways

Linear Algebra is Fundamental:

- Vectors and matrices naturally represent genomic data
- **② Eigendecomposition and SVD** reveal hidden structure
- Matrix factorization enables interpretable analysis
- Linear systems model biological processes

Practical Applications:

- Dimensionality reduction (PCA, SVD)
- Pattern recognition (clustering, classification)
- Network analysis (graph Laplacian)
- Regularized regression (LASSO, Ridge)

Computational Considerations:

- Numerical stability and conditioning
- Scalability for big genomic data
- Memory-efficient algorithms
- Parallel and distributed computing

Next Steps

Recommended Reading:

- Hastie, T. et al. "The Elements of Statistical Learning"
- Gentleman, R. et al. "Bioinformatics and Computational Biology Solutions Using R"
- Ewens, W.J. "Mathematical Population Genetics"

Software Tools:

- Python: NumPy, SciPy, scikit-learn, pandas
- R: Bioconductor, limma, edgeR, DESeq2
- Specialized: PLINK, GCTA, GEMMA for GWAS

Practice Datasets:

- Gene Expression Omnibus (GEO)
- The Cancer Genome Atlas (TCGA)
- 1000 Genomes Project
- UK Biobank

Questions?

Contact: sali85@student.gsu.edu