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Why Statistics Matter in Genomics

Biological data is inherently noisy and uncertain:

Measurement errors in sequencing

Biological variation between individuals

Technical replicates vs biological replicates

Missing data and dropout events

Multiple hypothesis testing challenges
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Key Insight

Statistical methods help us distinguish signal from noise in biological data.
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Types of Biological Data

Continuous Data:

Gene expression levels (RNA-seq)

Protein concentrations

Methylation levels

Copy number variations

Discrete Data:

SNP genotypes (0, 1, 2)

Read counts

Cell types (categorical)

Mutation presence/absence

High-Dimensional
Thousands of genes

Few samples (n << p)

Sparse
Many zero values
Dropout events

Heterogeneous
Different data types

Batch effects
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Probability Distributions in Biology

Normal Distribution:

Gene expression after log-transformation

Phenotypic measurements

Measurement errors

X ∼ N (µ, σ2)

f (x) = 1√
2πσ2

e−
(x−µ)2

2σ2

Binomial Distribution:

Allele frequencies

Success/failure in experiments

X ∼ Binomial(n, p)

P(X = k) =

(
n

k

)
pk(1− p)n−k
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Poisson Distribution:

RNA-seq read counts

Mutation counts

X ∼ Poisson(λ)

P(X = k) =
λke−λ

k!
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Bayes’ Theorem in Genomics

Bayes’ Theorem

P(H|E ) = P(E |H) · P(H)

P(E )

Where:

P(H|E ): Posterior probability (what we want to know)

P(E |H): Likelihood (probability of evidence given hypothesis)

P(H): Prior probability (initial belief)

P(E ): Marginal probability (normalizing constant)

Genomics Example: Disease Risk Prediction
H: Patient has disease
E : Genetic variant is present
P(H): Disease prevalence in population
P(E |H): Probability of variant given disease
P(H|E ): Risk of disease given variant presence
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Conditional Probability and Independence

Conditional Probability:

P(A|B) = P(A ∩ B)

P(B)

Independence: Two events A and B are independent if:

P(A|B) = P(A)

P(A ∩ B) = P(A) · P(B)

Biological Examples:

Linkage disequilibrium (non-independence)

Hardy-Weinberg equilibrium assumptions

Gene co-expression networks

A BA ∩ B

Dependent Events

A B

Independent Events
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Measures of Central Tendency

Mean (Arithmetic):

x̄ =
1

n

n∑
i=1

xi

Median: Middle value when data is ordered
Mode: Most frequently occurring value

When to use which?

Mean: Normal distributions

Median: Skewed data, outliers

Mode: Categorical data
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Note: In genomics, data is often log-transformed
to make it more normal.
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Measures of Variability

Variance:

σ2 =
1

n

n∑
i=1

(xi − µ)2

Standard Deviation:

σ =
√
σ2

Range:
Range = xmax − xmin

Interquartile Range (IQR):

IQR = Q3 − Q1

Coefficient of Variation:

CV =
σ

µ
× 100%

Box Plot
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Correlation and Covariance

Covariance:

Cov(X ,Y ) =
1

n

n∑
i=1

(xi − x̄)(yi − ȳ)

Pearson Correlation: r = Cov(X ,Y )
σXσY

Spearman Correlation: Correlation of ranks
(non-parametric)
Interpretation:

r = 1: Perfect positive correlation

r = 0: No linear correlation

r = −1: Perfect negative correlation
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Gene Co-expression

Genomics Application

Gene co-expression networks use correlation to identify functionally related genes.
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Hypothesis Testing Framework

The Process:

1 Null Hypothesis (H0): No
effect/difference

2 Alternative Hypothesis (H1): There is
an effect

3 Choose significance level (α = 0.05)

4 Calculate test statistic

5 Determine p-value

6 Make decision: Reject or fail to reject H0

Types of Errors:

Type I Error: False positive (α)

Type II Error: False negative (β)

Power: 1− β

H0 True H0 False

Reject H0 Type I Correct

Fail to Reject Correct Type II
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Common Statistical Tests in Genomics
t-tests:

One-sample: H0 : µ = µ0

Two-sample: H0 : µ1 = µ2

Paired: Before/after treatment

t =
x̄ − µ0

s/
√
n

Chi-square test:

Goodness of fit

Independence (contingency tables)

Hardy-Weinberg equilibrium

χ2 =
∑ (Oi − Ei )

2

Ei

ANOVA: Compare multiple groups

F =
MSbetween
MSwithin

Non-parametric tests:

Mann-Whitney U test

Wilcoxon signed-rank test

Kruskal-Wallis test

Example

Testing differential gene expression between
cancer and normal samples using t-test.
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Multiple Testing Problem

The Problem: When testing thousands of genes
simultaneously:

P(at least one false positive) = 1− (1− α)m

For m = 20, 000 genes and α = 0.05:

P ≈ 1− 0.9520000 ≈ 1

Solutions:

Bonferroni: αadj =
α
m

Benjamini-Hochberg (FDR): Control false
discovery rate

q-values: Bayesian approach to FDR
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Confidence Intervals

Definition: A confidence interval provides a range
of plausible values for a parameter.
For a mean (known σ):

CI = x̄ ± zα/2
σ√
n

For a mean (unknown σ):

CI = x̄ ± tα/2,df
s√
n

For a proportion:

CI = p̂ ± zα/2

√
p̂(1− p̂)

n

Interpretation: 95% CI means that if we repeated
the study many times, 95% of the intervals would
contain the true parameter.

True µ

95% CIs

Miss!

Parameter Value
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Bootstrap and Resampling Methods

Bootstrap Principle:
1 Resample with replacement from original data

2 Calculate statistic of interest

3 Repeat many times (e.g., 1000)

4 Use distribution of statistics for inference

Advantages:

No distributional assumptions

Works for complex statistics

Provides uncertainty estimates

Genomics Applications:

Gene set enrichment analysis

Phylogenetic tree confidence

Machine learning model validation

Original Sample
n = 100

Bootstrap
Sample 1

Bootstrap
Sample 2

Bootstrap
Sample 3

Bootstrap Statistics
θ̂1, θ̂2, ..., θ̂B
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Machine Learning Paradigms

Supervised Learning:

Classification: Predict discrete outcomes

Regression: Predict continuous outcomes

Examples: Disease diagnosis, gene expression
prediction

Unsupervised Learning:

Clustering: Group similar samples

Dimensionality Reduction: Reduce feature space

Examples: Cell type identification, pathway analysis

Semi-supervised Learning:

Combines labeled and unlabeled data

Useful when labels are expensive to obtain

Supervised
Learning

Input: (X ,Y )
Output: f : X → Y

Unsupervised
Learning
Input: X

Output: Hid-
den patterns

Semi-supervised
Input: (Xl ,Yl),Xu

Output: f : X → Y
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Bias-Variance Tradeoff

Decomposition of Prediction Error:

Error = Bias2 + Variance + Irreducible Error

Bias:

Error from oversimplifying assumptions

High bias → underfitting

Example: Linear model for nonlinear data

Variance:

Error from sensitivity to training data

High variance → overfitting

Example: Very deep decision trees

Goal: Find optimal balance between bias and
variance
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Cross-Validation

K-Fold Cross-Validation:

1 Split data into k folds

2 Train on k − 1 folds

3 Test on remaining fold

4 Repeat for all folds

5 Average performance across folds

Leave-One-Out CV (LOOCV):

Special case where k = n

Maximum use of data

Computationally expensive

Stratified CV:

Maintains class proportions in each fold

Important for imbalanced datasets

Fold 1

Fold 2

Fold 3

Fold 4

Fold 5

Training

Testing
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Genomic Data Characteristics

High-Dimensional Data:

Thousands of genes, few samples

p ≫ n problem

Curse of dimensionality

Sparsity:

Many zero values in gene expression

Dropout events in single-cell data

Sparse regulatory networks

Heterogeneity:

Batch effects, Different cell types

Technical vs biological variation

Noise:

Measurement errors

Biological stochasticity

Systematic biases

0.1 2.3 0.0 1.2 0.0

0.0 0.8 3.1 0.0 2.1

1.5 0.0 0.0 2.8 0.3

0.0 1.9 0.6 0.0 1.7

2.2 0.0 1.4 0.9 0.0

Gene Expression Matrix

Samples

Genes

2 4 6 8 10
1

2

3

4
Curse of

Dimensionality

Dimensions

D
is
ta
n
ce

19 / 28



Feature Selection and Dimensionality Reduction

Feature Selection Methods:

Filter: Statistical tests (t-test, chi-square)

Wrapper: Forward/backward selection

Embedded: LASSO, Ridge regression

Principal Component Analysis (PCA):
PCi =

∑p
j=1 wijXj

Finds directions of maximum variance

Linear transformation

Orthogonal components

t-SNE:

Non-linear dimensionality reduction

Preserves local structure

Good for visualization
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Classification Algorithms

Logistic Regression:
P(Y = 1|X ) = 1

1+e−(β0+β1X1+...+βpXp)

Support Vector Machines (SVM):

Finds optimal separating hyperplane

Kernel trick for non-linear boundaries

Robust to outliers

Random Forest:

Ensemble of decision trees

Bootstrap aggregating (bagging)

Feature importance measures

Neural Networks:

Deep learning architectures

Automatic feature learning

Requires large datasets
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Clustering Algorithms

K-means Clustering:
1 Initialize k cluster centers

2 Assign points to nearest center

3 Update centers to cluster means

4 Repeat until convergence

Minimize:
∑k

i=1

∑
x∈Ci

||x − µi ||2
Hierarchical Clustering:

Agglomerative (bottom-up)

Divisive (top-down)

Produces dendrogram

No need to specify k

Applications:

Cell type identification

Gene co-expression modules

Sample subgroups
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Model Evaluation Metrics

Classification Metrics:
Predicted + Predicted -

Actual + TP FN

Actual - FP TN

Accuracy: TP+TN
TP+TN+FP+FN

Precision: TP
TP+FP

Recall (Sensitivity): TP
TP+FN

Specificity: TN
TN+FP

F1-Score: 2×Precision×Recall
Precision+Recall
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Regression Metrics:

MSE: 1
n

∑
(yi − ŷi )

2, RMSE:
√
MSE

MAE: 1
n

∑
|yi − ŷi |, R²: 1− SSres

SStot
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Gene Expression Analysis

Differential Expression Analysis:

Compare expression between conditions

Statistical tests (t-test, limma, DESeq2)

Multiple testing correction

Effect size interpretation

Gene Set Enrichment Analysis (GSEA):

Identify enriched pathways

Rank-based approach

Functional interpretation

Co-expression Networks:

WGCNA (Weighted Gene Co-expression
Network Analysis)

Module identification

Hub gene detection
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Single-Cell Genomics

Challenges:

High sparsity (dropout events)

Technical noise

Batch effects

Computational scalability

Preprocessing:

Quality control filtering

Normalization (CPM, TPM, scran)

Batch correction (ComBat, Harmony)

Feature selection

Analysis Steps:
1 Dimensionality reduction (PCA, t-SNE, UMAP)

2 Clustering (Louvain, Leiden)

3 Cell type annotation

4 Trajectory analysis, Differential expression
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Genomic Variant Analysis

Types of Variants:

Single Nucleotide Polymorphisms (SNPs)

Insertions/Deletions (InDels)

Copy Number Variations (CNVs)

Structural Variants (SVs)

Variant Calling Pipeline:
1 Read alignment (BWA, Bowtie2)

2 Variant calling (GATK, FreeBayes)

3 Quality filtering, Annotation (VEP, ANNOVAR)

4 Functional impact prediction

Population Genetics:

Allele frequency analysis

Hardy-Weinberg equilibrium

Linkage disequilibrium

GWAS (Genome-Wide Association Studies)
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Phylogenetic Analysis

Sequence Alignment:

Multiple sequence alignment (MSA)

Tools: MUSCLE, ClustalW, MAFFT

Gap penalties and scoring matrices

Tree Construction Methods:

Distance-based: UPGMA, Neighbor-joining

Character-based: Maximum parsimony

Model-based: Maximum likelihood, Bayesian

Applications:

Species relationships

Evolutionary history

Pathogen tracking

Horizontal gene transfer

Species A

Species B

Species C

Species D

Species E
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Questions?

	 Thank You! y

Contact: sali85@student.gsu.edu
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