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Today's Learning Journey

@ Introduction to Biological Data Statistics
© Probability Theory Fundamentals

© Descriptive Statistics

@ Statistical Inference

© Confidence Intervals and Estimation

@ Machine Learning Fundamentals

0 Machine Learning for Genomics

© Applications in Genomics
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Why Statistics Matter in Genomics

Biological data is inherently noisy and uncertain: :
@ Measurement errors in sequencing g 20 .
o Biological variation between individuals % 10 - :
@ Technical replicates vs biological replicates = = ‘ ]
@ Missing data and dropout events 0 5
Gene Expression

@ Multiple hypothesis testing challenges

Statistical methods help us distinguish signal from noise in biological data. I
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Types of Biological Data

Continuous Data:
@ Gene expression levels (RNA-seq) High-Dimensional
Thousands of genes
Few samples (n << p)

@ Protein concentrations

o Methylation levels

o Copy number variations

Sparse
Many zero values
Discrete Data: Dropout events
@ SNP genotypes (0, 1, 2)
@ Read counts Heterogeneous

Different data types

o Cell types (categorical) Batch effects

@ Mutation presence/absence
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Probability Distributions in Biology

Normal Distribution:
@ Gene expression after log-transformation

@ Phenotypic measurements

@ Measurement errors
X~ N(N’ 02) R
(x=n)
_ 1 -
) = e
Binomial Distribution:

@ Allele frequencies
@ Success/failure in experiments

X ~ Binomial(n, p)

P(X = k) = (Z) (1 — p)rk

0.4}

Py
S 02+t .
(&)
o

0 [ ] | | | ]

——  Normal -4 -2 0 2 4
Binomial-like Value

Poisson Distribution:
@ RNA-seq read counts

@ Mutation counts

X ~ Poisson(\)

Akg=A
P(X =k)= o
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Bayes' Theorem in Genomics

Bayes' Theorem

P(E|H) - P(H)
P(HE) = ———=——
(HIE) === 105
Where:
@ P(H|E): Posterior probability (what we want to know)

P(E|H): Likelihood (probability of evidence given hypothesis)
P(H): Prior probability (initial belief)
P(E): Marginal probability (normalizing constant)

Genomics Example: Disease Risk Prediction
H: Patient has disease

E: Genetic variant is present

P(H): Disease prevalence in population
P(E|H): Probability of variant given disease
P(H|E): Risk of disease given variant presence

®© 6 6 06 0
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Conditional Probability and Independence

Conditional Probability:

P(AnN B)

PIAIB) = ~p(g) A ng B

Independence: Two events A and B are independent if:

P(A|B) = P(A)
Dependent Events

P(ANB) = P(A)- P(B)

Biological Examples: B
o Linkage disequilibrium (non-independence)
o Hardy-Weinberg equilibrium assumptions Independent Events
@ Gene co-expression networks
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Measures of Central Tendency

Mean (Arithmetic):

1 n 30 F A 1V|e|ean l
R=-2 x o \!
n i=1 5 20 [ ! m
3 1
. , . g 10 I N
Median: Middle value when data is ordered & |
Mode: Most frequently occurring value oL . |
5 10
When to use which? Gene Expression
e Mean: Normal distributions Note: In genomics, data is often log-transformed
° : Skewed data, outliers to make it more normal.

@ Mode: Categorical data
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Measures of Variability

Variance: )

1

0o? = " Z(Xi — )
i=1

Standard Deviation: Median

o=Vo? |— |-

Q1 Qs

Range: Box Plot

Range = Xmax — Xmin

Interquartile Range (IQR):
IQR=Q -
Coefficient of Variation:

cv =2 x 100%
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Correlation and Covariance

Covariance:
., Gene Co-expression
1 - _
Cov(X,Y) =~ > (i =)y —7) c .
i=1 .2
g 4
Pearson Correlation: r = % >§-
Spearman Correlation: Correlation of ranks ';;
(non-parametric) 0 ol i
. c
Interpretation: @
v ~0.95
o r = 1: Perfect positive correlation é =L t‘l

@ r = 0: No linear correlation Gene A Expression

@ r = —1: Perfect negative correlation

Genomics Application
Gene co-expression networks use correlation to identify functionally related genes.

™ . - = = AN
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Hypothesis Testing Framework

The Process:

@ Null Hypothesis (Hp): No
effect/difference

@ Alternative Hypothesis (H;): There is
an effect

@ Choose significance level (o = 0.05)

@ Calculate test statistic

© Determine p-value

O Make decision: Reject or fail to reject Hy

Types of Errors:
@ Type | Error: False positive ()
@ Type Il Error: False negative (3)
o Power: 1 -7

Ho True

Hy False

Reject Hp

Type |

Correct

Fail to Reject

Correct

Density

0.4
0.2

Type Il

|
|
|
|
value

s

0 2 4

Test Statistic
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Common Statistical Tests in Genomics

t-tests:
@ One-sample: Hp : = po ANOVA: Compare multiple groups
o Two-sample: Hp : p1 = po MS4etween
o Paired: Before/after treatment F= MS.ichin
= X — Mo Non-parametric tests:
s/v/n @ Mann-Whitney U test

Chi-square test: @ Wilcoxon signed-rank test

o Goodness of fit @ Kruskal-Wallis test

e Independence (contingency tables)

o Hardy-Weinberg equilibrium

Testing differential gene expression between
(0 — E;)? cancer and normal samples using t-test.

R
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Multiple Testing Problem

The Problem: When testing thousands of genes

simultaneously: 1
3§ —— P(> 1 false positive) ||
T+ m H
P(at least one false positive) =1 — (1 — «) =061 o
[s]
For m = 20,000 genes and o = 0.05: < 04} -
a 02 - :
P 1— 0952000 oLi---0=005 -
0 50 100
. Number of Tests
Solutions:
o Bonferroni: ayq = 7 Method | Threshold
e Benjamini-Hochberg (FDR): Control false Bonferroni | 2.5 x 107°
discovery rate FDR (5%) | Variable

@ ¢-values: Bayesian approach to FDR
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Confidence Intervals

Definition: A confidence interval provides a range
of plausible values for a parameter. 95% Cls
For a mean (known ¢):

o —
Cl=x+ Za/2_ 1
vn !
°
For a mean (unknown o): M
- s '
Cl=x+ ta/2’dfﬁ ._*_.
For a proportion: # Miss!
5(1— b !
Cl=p=+zy i) Y
n I
True p

Interpretation: 95% Cl means that if we repeated
the study many times, 95% of the intervals would Parameter Value

contain the true parameter.
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Bootstrap and Resampling Methods

Bootstrap Principle:
@ Resample with replacement from original data

@ Calculate statistic of interest
© Repeat many times (e.g., 1000)
@ Use distribution of statistics for inference

Advantages:
@ No distributional assumptions

@ Works for complex statistics

@ Provides uncertainty estimates
Genomics Applications:

@ Gene set enrichment analysis

@ Phylogenetic tree confidence

@ Machine learning model validation

Original Sample

n = 100
Bootgtrap Bootstrap Boovtstrap
Sample 1 Sample 2 Sample 3

Bootstrap Statistics

01,05, ... 05
>
2 03
A 0.1
210 1 2
0
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Machine Learning Paradigms

Supervised Learning:

o Classification: Predict discrete outcomes Superv_lsed
R o Predict conti . Learning
@ Regression: Predict continuous outcomes Input: (X, Y)
o Examples: Disease diagnosis, gene expression Output: f: X = Y
prediction
Unsupervised
Unsupervised Learning;: Learning
@ Clustering: Group similar samples Input: X
Output: Hid-

o Dimensionality Reduction: Reduce feature space
den patterns

o Examples: Cell type identification, pathway analysis

Semi-supervised

. Input: (X, Y1), Xy
@ Combines labeled and unlabeled data Output: f: X — Y

Semi-supervised Learning:

@ Useful when labels are expensive to obtain
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Bias-Variance Tradeoff

Decomposition of Prediction Error:

Error = Bias® + Variance + Irreducible Error

Bias: 20 -
@ Error from oversimplifying assumptions g
L - w 10 Opti 8
@ High bias — underfitting ~
e T T———— o
@ Example: Linear model for nonlinear data 0 : \ -
Variance: —  Bias® 0 5 10
o .. Variance Model Complexity
@ Error from sensitivity to training data
—— Total Error
@ High variance — overfitting ——~ Irreducible

o Example: Very deep decision trees

Goal: Find optimal balance between bias and

variance
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Cross-Validation

K-Fold Cross-Validation:
@ Split data into k folds Fold 1
@ Train on k — 1 folds
© Test on remaining fold

Fold 2

@ Repeat for all folds Fold 3

© Average performance across folds
Leave-One-Out CV (LOOCV): Fold 4

@ Special case where k = n

@ Maximum use of data Fold 5

o Computationally expensive
Stratified CV:

@ Maintains class proportions in each fold

[ ] Training
[] Testing

@ Important for imbalanced datasets
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Genomic Data Characteristics

High-Dimensional Data:
@ Thousands of genes, few samples

Genes
| ——
@ p>n pro.blem . .
@ Curse of dimensionality
ity: Samples
Sparsity: | |
@ Many zero values in gene expression

@ Dropout events in single-cell data . .
P & Gene Expression Matrix

@ Sparse regulatory networks

. 4 I I I I
Heterogeneity: g _ Curse of
@ Batch effects, Different cell types P 3 [Pimensionality—
=2
@ Technical vs biological variation é’ 2 7
Noise: 16— —
2 4 6 810
@ Measurement errors . .
Dimensions

@ Biological stochasticity
@ Systematic biases 19/28



Feature Selection and Dimensionality Reduction

Feature Selection Methods: ~ *
o Filter: Statistical tests (t-test, chi-square) Q 3 I
@ Wrapper: Forward/backward selection 3 2 |
o Embedded: LASSO, Ridge regression 1 %
Principal Component Analysis (PCA):
PCi = Zj'):l Wi Xj
@ Finds directions of maximum variance 60 .
@ Linear transformation X
@ Orthogonal components ch 40 |
t-SNE: < 20 1
@ Non-linear dimensionality reduction > 0
@ Preserves local structure 1 23 45
@ Good for visualization PC
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Classification Algorithms

Logistic Regression:

P(Y =1|X) = 1+e—(ﬁ0+ﬁllxl+..i+ﬂpx,,)
Support Vector Machines (SVM):

o Finds optimal separating hyperplane

o Kernel trick for non-linear boundaries 6 —
@ Robust to outliers o
41 .
Random Forest: % Class 1 g'w
[ @ |
@ Ensemble of decision trees O 2 oo Clazs-2
e Bootstrap aggregating (bagging) 0 (‘) é ;‘1
o Feature importance measures Gene A

Neural Networks:
@ Deep learning architectures
o Automatic feature learning

@ Requires large datasets 21/28



Clustering Algorithms

K-means Clustering:

@ Initialize k cluster centers

@ Assign points to nearest center

© Update centers to cluster means

© Repeat until convergence
Minimize: D10 3, cc, [1x — pil
Hierarchical Clustering:

@ Agglomerative (bottom-up)

@ Divisive (top-down)

@ Produces dendrogram

@ No need to specify k
Applications:

@ Cell type identification

@ Gene co-expression modules

@ Sample subgroups

4 [T I —]
+
L3l 4.
O
o 2 - -
1 *?4. | | il
1 2 3
PC1
Dendrogram
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Model Evaluation Metrics

Classification Metrics:

Accuracy: W
Precision: TPLFP

Recall (Sensitivity): %

Specificity: +y =5
F1-Score: 2xPrecisionxRecall

Precision+Recall

Predicted + | Predicted -
Actual + TP FN
Actual - FP TN
TP+TN

o oo
N ROy

True Positive Rate

0

Regression Metrics:

-’

| | | |
0 02040608 1

False Positive Rate

—— Perfect (AUC=1)

--- Random (AUC=0.5)

Good (AUC=0.85)

o MSE: 15°(y; — /)2, RMSE: VMSE

o MAE: 13|y, — i, R%: 1— 2=

tot
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Gene Expression Analysis

Differential Expression Analysis:
@ Compare expression between conditions
@ Statistical tests (t-test, limma, DESeq2)
@ Multiple testing correction

< 4 T ‘ ‘ T
o Effect size interpretation = 3 . Lt
Gene Set Enrichment Analysis (GSEA): Z_ ol 3 i |
@ Identify enriched pathways \é L ____ _: _____ o
@ Rank-based approach ED 1 -Dawn i 3 Up ]

@ Functional interpretation 0 _‘2 ‘ 6 ‘ é

Co-expression Networks:

© WGCNA (Weighted Gene Co-expression
Network Analysis)

log,(Fold Change)

@ Module identification

@ Hub gene detection
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Single-Cell Genomics

Challenges:
@ High sparsity (dropout events)
@ Technical noise
@ Batch effects

@ Computational scalability i, [ e |
. 1 !opqt.y;es K .I.Is N
Preprocessing: o~ R Rl
L
@ Quality control filtering =z 0 *
)
@ Normalization (CPM, TPM, scran) &9 o ]
B €l Koeells
@ Batch correction (ComBat, Harmony) B t
@ Feature selection —2 0 2
t-SNE 1

Analysis Steps:
@ Dimensionality reduction (PCA, t-SNE, UMAP)
@ Clustering (Louvain, Leiden)
@ Cell type annotation
© Trajectory analysis, Differential expression 25 /28



Genomic Variant Analysis

Types of Variants:
@ Single Nucleotide Polymorphisms (SNPs)
@ Insertions/Deletions (InDels)
@ Copy Number Variations (CNVs)
@ Structural Variants (SVs)
Variant Calling Pipeline:
© Read alignment (BWA, Bowtie2)
@ Variant calling (GATK, FreeBayes)
© Quality filtering, Annotation (VEP, ANNOVAR)
© Functional impact prediction
Population Genetics:
@ Allele frequency analysis
@ Hardy-Weinberg equilibrium
@ Linkage disequilibrium
@ GWAS (Genome-Wide Association Studies)

— logqo(p-value)

o N B O ©

R R
1 5 10 15 20

Chromosome
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Phylogenetic Analysis

Sequence Alignment:
o Multiple sequence alignment (MSA)
@ Tools: MUSCLE, ClustalW, MAFFT
@ Gap penalties and scoring matrices
Tree Construction Methods:
o Distance-based: UPGMA, Neighbor-joining
@ Character-based: Maximum parsimony
o Model-based: Maximum likelihood, Bayesian
Applications:
@ Species relationships
o Evolutionary history
@ Pathogen tracking

@ Horizontal gene transfer

Species A
~
—
Species B x‘\
89 \
Species

Species

C 78
\
°_/
—

Species E

0.1
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Questions?

Contact: sali85@student.gsu.edu
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