Machine Learning for Genomics

Mathematical Foundations: Statistics and Probability in Biological Data

Sarwan Ali

Department of Computer Science Georgia State University

Today's Learning Journey

- Introduction to Biological Data Statistics
- Probability Theory Fundamentals
- Oescriptive Statistics
- Statistical Inference
- Confidence Intervals and Estimation
- Machine Learning Fundamentals
- Machine Learning for Genomics
- 8 Applications in Genomics

Why Statistics Matter in Genomics

Biological data is inherently noisy and uncertain:

- Measurement errors in sequencing
- Biological variation between individuals
- Technical replicates vs biological replicates
- Missing data and dropout events
- Multiple hypothesis testing challenges

Key Insight

Statistical methods help us distinguish signal from noise in biological data.

Types of Biological Data

Continuous Data:

- Gene expression levels (RNA-seq)
- Protein concentrations
- Methylation levels
- Copy number variations

Discrete Data:

- SNP genotypes (0, 1, 2)
- Read counts
- Cell types (categorical)
- Mutation presence/absence

High-Dimensional

Thousands of genes Few samples $(n \ll p)$

Sparse

Many zero values
Dropout events

Heterogeneous

Different data types
Batch effects

Probability Distributions in Biology

Normal Distribution:

- Gene expression after log-transformation
- Phenotypic measurements
- Measurement errors

$$X \sim \mathcal{N}(\mu, \sigma^2)$$

$$f(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

Binomial Distribution:

- Allele frequencies
- Success/failure in experiments

$$X \sim \mathsf{Binomial}(n, p)$$

$$P(X = k) = \binom{n}{k} p^k (1 - p)^{n-k}$$

Poisson Distribution:

- RNA-seq read counts
- Mutation counts

$$X \sim \text{Poisson}(\lambda)$$

$$P(X = k) = \frac{\lambda^k e^{-\lambda}}{k!}$$

$$) = \frac{1}{2} + \frac{1}{2} \cdot k! = 1 + \frac{1}{2} \cdot k! = 1$$

Bayes' Theorem in Genomics

Bayes' Theorem

$$P(H|E) = \frac{P(E|H) \cdot P(H)}{P(E)}$$

Where:

- P(H|E): Posterior probability (what we want to know)
- \bullet P(E|H): Likelihood (probability of evidence given hypothesis)
- P(H): Prior probability (initial belief)
- \bullet P(E): Marginal probability (normalizing constant)

Genomics Example: Disease Risk Prediction

- H: Patient has disease
- E: Genetic variant is present
- P(H): Disease prevalence in population
- P(E|H): Probability of variant given disease
- P(H|E): Risk of disease given variant presence

Conditional Probability and Independence

Conditional Probability:

$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$

Independence: Two events A and B are independent if:

$$P(A|B) = P(A)$$

$$P(A \cap B) = P(A) \cdot P(B)$$

Biological Examples:

- Linkage disequilibrium (non-independence)
- Hardy-Weinberg equilibrium assumptions
- Gene co-expression networks

Dependent Events

Independent Events

Measures of Central Tendency

Mean (Arithmetic):

$$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$$

Median: Middle value when data is ordered **Mode:** Most frequently occurring value

When to use which?

Mean: Normal distributions

Median: Skewed data, outliers

Mode: Categorical data

Note: In genomics, data is often log-transformed to make it more normal.

Measures of Variability

Variance:

$$\sigma^2 = \frac{1}{n} \sum_{i=1}^{n} (x_i - \mu)^2$$

Standard Deviation:

$$\sigma = \sqrt{\sigma^2}$$

Range:

$$\mathsf{Range} = x_{\mathsf{max}} - x_{\mathsf{min}}$$

Interquartile Range (IQR):

$$IQR = Q_3 - Q_1$$

Coefficient of Variation:

$$\mathit{CV} = rac{\sigma}{\mu} imes 100\%$$

Correlation and Covariance

Covariance:

$$Cov(X, Y) = \frac{1}{n} \sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})$$

Pearson Correlation: $r = \frac{Cov(X,Y)}{\sigma_X \sigma_Y}$

Spearman Correlation: Correlation of ranks

(non-parametric)

Interpretation:

- r = 1: Perfect positive correlation
- r = 0: No linear correlation
- r = -1: Perfect negative correlation

Gene Co-expression

Gene A Expression

Genomics Application

Gene co-expression networks use correlation to identify functionally related genes.

Hypothesis Testing Framework

The Process:

- Null Hypothesis (*H*₀): No effect/difference
- **Alternative Hypothesis** (H_1) : There is an effect
- **o** Choose significance level ($\alpha = 0.05$)
- Calculate test statistic
- Determine p-value
- **1** Make decision: Reject or fail to reject H_0

Types of Errors:

- Type I Error: False positive (α)
- Type II Error: False negative (β)
- Power: 1β

Common Statistical Tests in Genomics

t-tests:

- ullet One-sample: $H_0: \mu = \mu_0$
- Two-sample: $H_0: \mu_1 = \mu_2$
- Paired: Before/after treatment

$$t = \frac{\bar{x} - \mu_0}{s / \sqrt{n}}$$

Chi-square test:

- Goodness of fit
- Independence (contingency tables)
- Hardy-Weinberg equilibrium

$$\chi^2 = \sum \frac{(O_i - E_i)^2}{E_i}$$

ANOVA: Compare multiple groups

$$F = \frac{\mathsf{MS}_{\mathsf{between}}}{\mathsf{MS}_{\mathsf{within}}}$$

Non-parametric tests:

- Mann-Whitney U test
- Wilcoxon signed-rank test
- Kruskal-Wallis test

Example

Testing differential gene expression between cancer and normal samples using t-test.

12/28

Multiple Testing Problem

The Problem: When testing thousands of genes simultaneously:

$$P(\text{at least one false positive}) = 1 - (1 - \alpha)^m$$

For m=20,000 genes and $\alpha=0.05$:

$$P\approx 1-0.95^{20000}\approx 1$$

Solutions:

- Bonferroni: $\alpha_{adj} = \frac{\alpha}{m}$
- Benjamini-Hochberg (FDR): Control false discovery rate
- q-values: Bayesian approach to FDR

Number of Tests

Method	Threshold	
Bonferroni	2.5×10^{-6}	
FDR (5%)	Variable	

Confidence Intervals

Definition: A confidence interval provides a range of plausible values for a parameter.

For a mean (known σ):

$$CI = \bar{x} \pm z_{\alpha/2} \frac{\sigma}{\sqrt{n}}$$

For a mean (unknown σ):

$$CI = ar{x} \pm t_{lpha/2,df} rac{s}{\sqrt{n}}$$

For a proportion:

$$CI = \hat{p} \pm z_{lpha/2} \sqrt{rac{\hat{p}(1-\hat{p})}{n}}$$

Interpretation: 95% CI means that if we repeated the study many times, 95% of the intervals would contain the true parameter.

14 / 28

Bootstrap and Resampling Methods

Bootstrap Principle:

- Resample with replacement from original data
- Calculate statistic of interest
- Repeat many times (e.g., 1000)
- Use distribution of statistics for inference

Advantages:

- No distributional assumptions
- Works for complex statistics
- Provides uncertainty estimates

Genomics Applications:

- Gene set enrichment analysis
- Phylogenetic tree confidence
- Machine learning model validation

Machine Learning Paradigms

Supervised Learning:

- Classification: Predict discrete outcomes
- Regression: Predict continuous outcomes
- Examples: Disease diagnosis, gene expression prediction

Unsupervised Learning:

- **Clustering**: Group similar samples
- Dimensionality Reduction: Reduce feature space
- Examples: Cell type identification, pathway analysis

Semi-supervised Learning:

- Combines labeled and unlabeled data
- Useful when labels are expensive to obtain

Supervised Learning

Input: (X, Y)Output: $f: X \rightarrow Y$

Unsupervised Learning

Input: X
Output: Hidden patterns

Semi-supervised

Input: $(X_I, Y_I), X_u$ Output: $f: X \to Y$

Bias-Variance Tradeoff

Decomposition of Prediction Error:

 $Error = Bias^2 + Variance + Irreducible Error$

Bias:

- Error from oversimplifying assumptions
- ullet High bias o underfitting
- Example: Linear model for nonlinear data

Variance:

- Error from sensitivity to training data
- ullet High variance o overfitting
- Example: Very deep decision trees

Goal: Find optimal balance between bias and variance

Cross-Validation

K-Fold Cross-Validation:

- Split data into k folds
- 2 Train on k-1 folds
- Test on remaining fold
- Repeat for all folds
- Average performance across folds

Leave-One-Out CV (LOOCV):

- Special case where k = n
- Maximum use of data
- Computationally expensive

Stratified CV:

- Maintains class proportions in each fold
- Important for imbalanced datasets

Genomic Data Characteristics

High-Dimensional Data:

- Thousands of genes, few samples
- $p \gg n$ problem
- Curse of dimensionality

Sparsity:

- Many zero values in gene expression
- Dropout events in single-cell data
- Sparse regulatory networks

Heterogeneity:

- Batch effects, Different cell types
- Technical vs biological variation

Noise:

- Measurement errors
- Biological stochasticity
- Systematic biases

Gene Expression Matrix

Feature Selection and Dimensionality Reduction

Feature Selection Methods:

- Filter: Statistical tests (t-test, chi-square)
- Wrapper: Forward/backward selection
- Embedded: LASSO, Ridge regression

Principal Component Analysis (PCA):

$$PC_i = \sum_{j=1}^{p} w_{ij} X_j$$

- Finds directions of maximum variance
- Linear transformation
- Orthogonal components

t-SNE:

- Non-linear dimensionality reduction
- Preserves local structure
- Good for visualization

Classification Algorithms

Logistic Regression:

$$P(Y=1|X) = \frac{1}{1+e^{-(\beta_0+\beta_1X_1+...+\beta_pX_p)}}$$

Support Vector Machines (SVM):

- Finds optimal separating hyperplane
- Kernel trick for non-linear boundaries
- Robust to outliers

Random Forest:

- Ensemble of decision trees
- Bootstrap aggregating (bagging)
- Feature importance measures

Neural Networks:

- Deep learning architectures
- Automatic feature learning
- Requires large datasets

Clustering Algorithms

K-means Clustering:

- Initialize *k* cluster centers
- Assign points to nearest center
- Update centers to cluster means
- Repeat until convergence
- Minimize: $\sum_{i=1}^{k} \sum_{x \in C_i} ||x \mu_i||^2$

Hierarchical Clustering:

- Agglomerative (bottom-up)
- Divisive (top-down)
- Produces dendrogram
- No need to specify k

Applications:

- Cell type identification
- Gene co-expression modules
- Sample subgroups

Model Evaluation Metrics

Classification Metrics:

Classification Metrics:		
	Predicted +	Predicted -
Actual +	TP	FN
Actual -	FP	TN

Accuracy: $\frac{IP+IN}{TP+TN+FP+FN}$

Precision: $\frac{TP}{TP+FF}$

Recall (Sensitivity): $\frac{TP}{TP+FN}$

Specificity: $\frac{TN}{TN+FP}$ F1-Score: $\frac{2 \times Precision \times Recall}{Precision+Recall}$

False Positive Rate

Perfect (AUC=1)Good (AUC=0.85)Random (AUC=0.5)

Regression Metrics:

- MSE: $\frac{1}{n}\sum (y_i \hat{y}_i)^2$, RMSE: \sqrt{MSE}
- MAE: $\frac{1}{n} \sum |y_i \hat{y}_i|$, \mathbb{R}^2 : $1 \frac{SS_{res}}{SS_{tot}}$

Gene Expression Analysis

Differential Expression Analysis:

- Compare expression between conditions
- Statistical tests (t-test, limma, DESeq2)
- Multiple testing correction
- Effect size interpretation

Gene Set Enrichment Analysis (GSEA):

- Identify enriched pathways
- Rank-based approach
- Functional interpretation

Co-expression Networks:

- WGCNA (Weighted Gene Co-expression Network Analysis)
- Module identification
- Hub gene detection

 $log_2(Fold Change)$

Single-Cell Genomics

Challenges:

- High sparsity (dropout events)
- Technical noise
- Batch effects
- Computational scalability

Preprocessing:

- Quality control filtering
- Normalization (CPM, TPM, scran)
- Batch correction (ComBat, Harmony)
- Feature selection

Analysis Steps:

- Dimensionality reduction (PCA, t-SNE, UMAP)
- Clustering (Louvain, Leiden)
- Cell type annotation
 - Trajectory analysis, Differential expression

Genomic Variant Analysis

Types of Variants:

- Single Nucleotide Polymorphisms (SNPs)
- Insertions/Deletions (InDels)
- Copy Number Variations (CNVs)
- Structural Variants (SVs)

Variant Calling Pipeline:

- Read alignment (BWA, Bowtie2)
- Variant calling (GATK, FreeBayes)
- Quality filtering, Annotation (VEP, ANNOVAR)
- Functional impact prediction

Population Genetics:

- Allele frequency analysis
- Hardy-Weinberg equilibrium
- Linkage disequilibrium
- GWAS (Genome-Wide Association Studies)

Phylogenetic Analysis

Sequence Alignment:

- Multiple sequence alignment (MSA)
- Tools: MUSCLE, ClustalW, MAFFT
- Gap penalties and scoring matrices

Tree Construction Methods:

- Distance-based: UPGMA, Neighbor-joining
- Character-based: Maximum parsimony
- Model-based: Maximum likelihood, Bayesian

Applications:

- Species relationships
- Evolutionary history
- Pathogen tracking
- Horizontal gene transfer

Questions?

Contact: sali85@student.gsu.edu