
Dynamic Programming in Reinforcement Learning
Policy Evaluation (Prediction Problem)

Sarwan Ali
Department of Computer Science

Georgia State University

Æ Policy Evaluation in Dynamic Programming ¢

1 / 20



Today’s Learning Journey

1 Introduction to Policy Evaluation

2 Bellman Equation for Policy Evaluation

3 Iterative Policy Evaluation

4 Implementation Considerations

5 Worked Example

6 Applications and Extensions

2 / 20



What is Policy Evaluation?

Definition

Policy Evaluation (also called the prediction problem) is the task of computing the
state-value function vπ(s) for a given policy π.

Key Questions:

Given a policy π, how good is each state?

What is the expected return from state s
following π?

How do we compute vπ(s) efficiently?

s1 s2

s3

π(a|s1)

Policy π determines transitions

3 / 20



Recall: State-Value Function

State-Value Function for Policy π

vπ(s) = Eπ[Gt |St = s] = Eπ

[ ∞∑
k=0

γkRt+k+1|St = s

]

Components:

Gt : Return (cumulative discounted reward)

γ: Discount factor (0 ≤ γ ≤ 1)

Eπ[·]: Expectation under policy π

Rt+k+1: Reward at time step t + k + 1

Key Insight

vπ(s) tells us the expected long-term
value of being in state s and
following policy π thereafter.

4 / 20



The Bellman Equation for vπ

Bellman Equation for State-Value Function

vπ(s) =
∑
a

π(a|s)
∑
s′,r

p(s ′, r |s, a)[r + γvπ(s
′)]

Intuitive Breakdown:
1 For each possible action a in state s:

Weight by policy probability π(a|s)
2 For each possible next state s ′ and reward r :

Weight by transition probability p(s ′, r |s, a)
Add immediate reward r plus discounted future value γvπ(s

′)

Key Property

This is a system of linear equations in the unknowns vπ(s) for all s ∈ S.

5 / 20



Bellman Equation: Matrix Form

For finite MDPs, we can write the Bellman equation in matrix form:

Matrix Form

vπ = rπ + γPπvπ

Where:

vπ: Vector of state values [vπ(s1), vπ(s2), . . . , vπ(sn)]
T

rπ: Vector of expected immediate rewards under π

Pπ: State transition probability matrix under π

Closed-Form Solution

vπ = (I− γPπ)
−1rπ

Problem: Matrix inversion is O(n3) - impractical for large state spaces!
6 / 20



Example: Simple Grid World

Consider a 2× 2 grid world with deterministic policy:

s1 s2

s3 s4 (T)

r = −1 except terminal

Bellman Equations:

vπ(s1) = −1 + γvπ(s3) (1)

vπ(s2) = −1 + γvπ(s4) (2)

vπ(s3) = −1 + γvπ(s4) (3)

vπ(s4) = 0 (terminal) (4)

Solution with γ = 0.9:

vπ(s4) = 0

vπ(s3) = −1 + 0.9× 0 = −1
vπ(s2) = −1 + 0.9× 0 = −1
vπ(s1) = −1 + 0.9× (−1) = −1.9

7 / 20



Iterative Policy Evaluation Algorithm

Since matrix inversion is expensive, use iterative methods:

Iterative Policy Evaluation

vk+1(s) =
∑
a

π(a|s)
∑
s′,r

p(s ′, r |s, a)[r + γvk(s
′)]

Key Ideas:

Start with arbitrary initial values v0(s) for all s

Repeatedly apply the Bellman equation as an update rule

Under certain conditions, vk → vπ as k →∞
Advantages:

Simple to implement

Guaranteed convergence

Memory efficient

Considerations:

Requires many iterations

Needs full model knowledge

Computational cost per iteration
8 / 20



Iterative Policy Evaluation: Pseudocode

Algorithm 1 Iterative Policy Evaluation

Require: Policy π to be evaluated
Require: Small threshold θ > 0 determining accuracy
1: Initialize V (s) = 0 for all s ∈ S+
2: repeat
3: ∆← 0
4: for each s ∈ S do
5: v ← V (s)
6: V (s)←

∑
a π(a|s)

∑
s′,r p(s

′, r |s, a)[r + γV (s ′)]
7: ∆← max(∆, |v − V (s)|)
8: end for
9: until ∆ < θ

10: return V ≈ vπ

Time Complexity: O(|S|2|A|) per iteration
Space Complexity: O(|S|)

9 / 20



Convergence Properties

Theorem (Convergence of Iterative Policy Evaluation)

For any policy π and any initial value function v0, the sequence {vk} generated by iterative
policy evaluation converges to vπ as k →∞.

Why does this work?

The Bellman operator Tπ defined by:

Tπv(s) =
∑
a

π(a|s)
∑
s′,r

p(s ′, r |s, a)[r + γv(s ′)]

Is a contraction mapping with contraction factor γ
By Banach Fixed-Point Theorem, has unique fixed point vπ

Rate of Convergence

∥vk − vπ∥∞ ≤ γk∥v0 − vπ∥∞
Convergence is exponentially fast with rate γ.

10 / 20



In-Place vs. Two-Array Updates

Two-Array Method:

Use separate arrays for vk and vk+1

Update all states simultaneously

Requires 2|S| memory

Update Rule

vk+1(s) = Tπvk(s)

In-Place Method:

Use single array

Update states one at a time

Use most recent values

Requires |S| memory

Update Rule

v(s)← Tπv(s)

Key Insight

In-place updates typically converge faster because they use more up-to-date information,
though convergence is still guaranteed.

11 / 20



Stopping Criteria

How do we know when to stop iterating?
1 Maximum Change Criterion:

max
s
|vk+1(s)− vk(s)| < θ

2 Relative Change Criterion:

maxs |vk+1(s)− vk(s)|
maxs |vk(s)|

< θ

3 Fixed Number of Iterations: Simply run for N iterations

Error Bound

If we stop when maxs |vk+1(s)− vk(s)| < θ, then:

∥vk − vπ∥∞ ≤
θ

1− γ

12 / 20



Computational Complexity Analysis

Per Iteration Complexity:

For each state s ∈ S: O(|A| × |S|)
Total per iteration: O(|S|2|A|)

Number of Iterations:

Depends on discount factor γ and desired accuracy θ
Approximately O(log(1/θ)/ log(1/γ)) iterations

Total Complexity:

O

(
|S|2|A| log(1/θ)

log(1/γ)

)
Practical Implications

Higher γ (closer to 1) ⇒ slower convergence

Smaller θ (higher accuracy) ⇒ more iterations

Quadratic in number of states ⇒ challenging for large state spaces
13 / 20



Example: Student MDP

Consider a simplified model of a student’s day:

Class Study

Sleep Party

0.8, r = +2

0.2, r = −1 0.6, r = +1

0.4, r = −2

0.7, r = +3

0.3, r = −1
1.0, r = 0

Policy π: Deterministic policy shown
by transition probabilities

Discount factor: γ = 0.9

Task: Compute vπ(s) for each state

14 / 20



Student MDP: Bellman Equations

Setting up the system:

vπ(Class) = 0.8[2 + 0.9 · vπ(Study)] + 0.2[−1 + 0.9 · vπ(Sleep)] (5)

vπ(Study) = 0.4[−2 + 0.9 · vπ(Class)] + 0.6[1 + 0.9 · vπ(Party)] (6)

vπ(Party) = 0.7[3 + 0.9 · vπ(Sleep)] + 0.3[−1 + 0.9 · vπ(Study)] (7)

vπ(Sleep) = 1.0[0 + 0.9 · vπ(Class)] (8)

Simplifying:

vπ(C ) = 1.6 + 0.72 · vπ(S)− 0.18 · vπ(Sl) (9)

vπ(S) = −0.8 + 0.36 · vπ(C ) + 0.54 · vπ(P) (10)

vπ(P) = 2.1 + 0.63 · vπ(Sl) + 0.27 · vπ(S) (11)

vπ(Sl) = 0.9 · vπ(C ) (12)

15 / 20



Student MDP: Iterative Solution

Iteration 0: Initialize v0(s) = 0 for all states

Iteration Class Study Party Sleep
0 0.00 0.00 0.00 0.00
1 1.60 -0.80 2.10 0.00
2 1.03 1.35 2.10 1.44
3 2.57 1.50 3.01 0.93
4 2.42 2.55 3.65 2.31
5 3.43 2.85 4.14 2.18
...

...
...

...
...

Converged 4.12 3.68 5.02 3.71

Interpretation:

Party state has highest value (5.02) - most rewarding long-term
Class state has good value (4.12) - leads to productive outcomes
Study and Sleep have similar moderate values

16 / 20



When Do We Use Policy Evaluation?

Direct Applications:

Policy Assessment: Evaluate how good a given policy is

Comparison: Compare multiple policies

Debugging: Understand policy behavior in different states

As Building Block for:

Policy Iteration: Alternates between policy evaluation and improvement

Value Iteration: Truncated policy evaluation (1 step)

Actor-Critic Methods: Continuous policy evaluation

Monte Carlo Methods: Sample-based policy evaluation

Key Insight

Policy evaluation is the prediction component of reinforcement learning. Most RL algorithms
need some form of value function estimation.

17 / 20



Limitations and Challenges

Computational Limitations:

Curse of Dimensionality: O(|S|2) complexity

Full Model Required: Need p(s ′, r |s, a) for all transitions
Memory Requirements: Store value for every state

Practical Challenges:

Large State Spaces: Millions or billions of states

Continuous States: Infinite state spaces

Unknown Dynamics: Model-free environments

Solutions:

Function Approximation: Neural networks, linear functions

Sampling Methods: Monte Carlo, Temporal Difference

State Aggregation: Group similar states
18 / 20



Summary and Key Takeaways

Policy Evaluation: Core Concepts

Goal: Compute vπ(s) for a given policy π

Method: Solve Bellman equation vπ = rπ + γPπvπ

Algorithm: Iterative application of Bellman operator

Convergence: Guaranteed for γ < 1

Practical Implementation:

Use in-place updates for faster convergence

Choose appropriate stopping criteria

Consider computational complexity

Next Steps:

Policy Improvement: How to find better policies

Policy Iteration: Combining evaluation and improvement

Value Iteration: More efficient dynamic programming
19 / 20



Questions and Discussion

®

Questions?

sali85@student.gsu.edu

Next: Policy Improvement and Policy Iteration

20 / 20


	Introduction to Policy Evaluation
	Bellman Equation for Policy Evaluation
	Iterative Policy Evaluation
	Implementation Considerations
	Worked Example
	Applications and Extensions

