Dynamic Programming in Reinforcement Learning Policy Evaluation (Prediction Problem)

Sarwan Ali Department of Computer Science

Georgia State University

Today's Learning Journey

- Introduction to Policy Evaluation
- 2 Bellman Equation for Policy Evaluation
- Iterative Policy Evaluation
- Implementation Considerations
- Worked Example
- 6 Applications and Extensions

What is Policy Evaluation?

Definition

Policy Evaluation (also called the *prediction problem*) is the task of computing the state-value function $v_{\pi}(s)$ for a given policy π .

Key Questions:

- Given a policy π , how good is each state?
- What is the expected return from state s following π?
- How do we compute $v_{\pi}(s)$ efficiently?

Policy π determines transitions

Recall: State-Value Function

State-Value Function for Policy π

$$[v_\pi(s) = \mathbb{E}_\pi[G_t|S_t = s] = \mathbb{E}_\pi\left[\sum_{k=0}^\infty \gamma^k R_{t+k+1}|S_t = s
ight]$$

Components:

- *G_t*: Return (cumulative discounted reward)
- γ : Discount factor (0 $\leq \gamma \leq 1$)
- $\mathbb{E}_{\pi}[\cdot]$: Expectation under policy π
- R_{t+k+1} : Reward at time step t + k + 1

Key Insight

 $v_{\pi}(s)$ tells us the expected long-term value of being in state s and following policy π thereafter.

The Bellman Equation for v_{π}

Bellman Equation for State-Value Function

$$v_{\pi}(s) = \sum_{a} \pi(a|s) \sum_{s',r} p(s',r|s,a) [r + \gamma v_{\pi}(s')]$$

Intuitive Breakdown:

- For each possible action *a* in state *s*:
 - Weight by policy probability $\pi(a|s)$
- 2 For each possible next state s' and reward r:
 - Weight by transition probability p(s', r|s, a)
 - Add immediate reward r plus discounted future value $\gamma v_{\pi}(s')$

Key Property

This is a **system of linear equations** in the unknowns $v_{\pi}(s)$ for all $s \in \mathcal{S}$.

Bellman Equation: Matrix Form

For finite MDPs, we can write the Bellman equation in matrix form:

Matrix Form

$$\mathbf{v}_{\pi} = \mathbf{r}_{\pi} + \gamma \mathbf{P}_{\pi} \mathbf{v}_{\pi}$$

Where:

- \mathbf{v}_{π} : Vector of state values $[v_{\pi}(s_1), v_{\pi}(s_2), \dots, v_{\pi}(s_n)]^T$
- \mathbf{r}_{π} : Vector of expected immediate rewards under π
- \mathbf{P}_{π} : State transition probability matrix under π

Closed-Form Solution

$$\mathbf{v}_{\pi} = (\mathbf{I} - \gamma \mathbf{P}_{\pi})^{-1} \mathbf{r}_{\pi}$$

Problem: Matrix inversion is $O(n^3)$ - impractical for large state spaces!

Example: Simple Grid World

Consider a 2×2 grid world with deterministic policy:

$$r = -1$$
 except terminal

$$v_{\pi}(s_3) = v_{\pi}(s_4) = v_{\pi}(s_4)$$

$$v_{\pi}(s_2) = -1 + \gamma v_{\pi}(s_4)$$

$$egin{aligned}
u_\pi(s_3) &= -1 + \gamma v_\pi(s_4) \
u_\pi(s_4) &= 0 ext{ (terminal)} \end{aligned}$$

 $v_{\pi}(s_1) = -1 + \gamma v_{\pi}(s_3)$

(1)

(2)

7/20

Solution with
$$\gamma = 0.9$$
:

•
$$v_{\pi}(s_4) = 0$$

•
$$v_{\pi}(s_3) = -1 + 0.9 \times 0 = -1$$

•
$$v_{\pi}(s_2) = -1 + 0.9 \times 0 = -1$$

•
$$v_{\pi}(s_1) = -1 + 0.9 \times (-1) = -1.9$$

Iterative Policy Evaluation Algorithm

Since matrix inversion is expensive, use **iterative methods**:

Iterative Policy Evaluation

$$v_{k+1}(s) = \sum_{a} \pi(a|s) \sum_{s',r} p(s',r|s,a) [r + \gamma v_k(s')]$$

Key Ideas:

- Start with arbitrary initial values $v_0(s)$ for all s
- Repeatedly apply the Bellman equation as an update rule
- Under certain conditions, $v_k o v_\pi$ as $k o \infty$

Advantages:

- Simple to implement
- Guaranteed convergence
- Memory efficient

Considerations:

- Requires many iterations
- Needs full model knowledge
- Computational cost per iteration

Iterative Policy Evaluation: Pseudocode

Algorithm 1 Iterative Policy Evaluation

Require: Policy π to be evaluated

Require: Small threshold $\theta > 0$ determining accuracy

- 1: Initialize V(s)=0 for all $s\in \mathcal{S}^+$
- 2: repeat
- 3: $\Delta \leftarrow 0$
- 4: **for** each $s \in \mathcal{S}$ **do**
- 5: $v \leftarrow V(s)$
- 6: $V(s) \leftarrow \sum_{a} \pi(a|s) \sum_{s',r} p(s',r|s,a) [r + \gamma V(s')]$
- 7: $\Delta \leftarrow \max(\Delta, |v V(s)|)$ 8: **end for**
- 9: **until** $\Delta < \theta$
- 9: **until** $\Delta < \theta$ 10: **return** $V \approx v_{\pi}$

Convergence Properties

Theorem (Convergence of Iterative Policy Evaluation)

For any policy π and any initial value function v_0 , the sequence $\{v_k\}$ generated by iterative policy evaluation converges to v_{π} as $k \to \infty$.

Why does this work?

• The Bellman operator T_{π} defined by:

$$T_{\pi}v(s) = \sum_{a} \pi(a|s) \sum_{s',r} p(s',r|s,a)[r + \gamma v(s')]$$

- Is a contraction mapping with contraction factor γ
- ullet By Banach Fixed-Point Theorem, has unique fixed point v_{π}

Rate of Convergence

$$\|\mathbf{v}_k - \mathbf{v}_{\pi}\|_{\infty} \le \gamma^k \|\mathbf{v}_0 - \mathbf{v}_{\pi}\|_{\infty}$$

Convergence is **exponentially fast** with rate γ .

In-Place vs. Two-Array Updates

Two-Array Method:

- ullet Use separate arrays for v_k and v_{k+1}
- Update all states simultaneously
- Requires $2|\mathcal{S}|$ memory

Update Rule

$$v_{k+1}(s) = T_{\pi}v_k(s)$$

In-Place Method:

- Use single array
- Update states one at a time
- Use most recent values
- ullet Requires $|\mathcal{S}|$ memory

Update Rule

$$v(s) \leftarrow T_{\pi}v(s)$$

Key Insight

In-place updates typically converge **faster** because they use more up-to-date information, though convergence is still guaranteed.

Stopping Criteria

How do we know when to stop iterating?

Maximum Change Criterion:

$$\max_{s}|v_{k+1}(s)-v_k(s)|<\theta$$

② Relative Change Criterion:

$$\frac{\max_{s}|v_{k+1}(s)-v_{k}(s)|}{\max_{s}|v_{k}(s)|}<\theta$$

In Fixed Number of Iterations: Simply run for *N* iterations

Error Bound

If we stop when $\max_{s} |v_{k+1}(s) - v_k(s)| < \theta$, then:

$$\|v_k - v_\pi\|_{\infty} \leq \frac{\theta}{1 - \gamma}$$

Computational Complexity Analysis

Per Iteration Complexity:

- For each state $s \in \mathcal{S}$: $O(|\mathcal{A}| \times |\mathcal{S}|)$
 - Total per iteration: $O(|\mathcal{S}|^2|\mathcal{A}|)$

Number of Iterations:

- \bullet Depends on discount factor γ and desired accuracy θ
- Approximately $O(\log(1/\theta)/\log(1/\gamma))$ iterations

Total Complexity:

$$O\left(rac{|\mathcal{S}|^2|\mathcal{A}|\log(1/ heta)}{\log(1/\gamma)}
ight)$$

Practical Implications

- Higher γ (closer to 1) \Rightarrow slower convergence
 - Smaller θ (higher accuracy) \Rightarrow more iterations
 - Quadratic in number of states ⇒ challenging for large state spaces

Example: Student MDP

Consider a simplified model of a student's day:

Policy π : Deterministic policy shown by transition probabilities

Discount factor: $\gamma = 0.9$

Task: Compute $v_{\pi}(s)$ for each state

Student MDP: Bellman Equations

Setting up the system:

$$v_{\pi}(\mathsf{Class}) = 0.8[2 + 0.9 \cdot v_{\pi}(\mathsf{Study})] + 0.2[-1 + 0.9 \cdot v_{\pi}(\mathsf{Sleep})]$$

 $v_{\pi}(\mathsf{Study}) = 0.4[-2 + 0.9 \cdot v_{\pi}(\mathsf{Class})] + 0.6[1 + 0.9 \cdot v_{\pi}(\mathsf{Party})]$

$$v_{\pi}(\mathsf{Study}) = 0.4[-2 + 0.9 \cdot v_{\pi}(\mathsf{Class})] + 0.6[1 + 0.9 \cdot v_{\pi}(\mathsf{Party})]$$

 $v_{\pi}(\mathsf{Party}) = 0.7[3 + 0.9 \cdot v_{\pi}(\mathsf{Sleep})] + 0.3[-1 + 0.9 \cdot v_{\pi}(\mathsf{Study})]$

$$v_{-}(C) = 1.6 +$$

$$v_{\pi}(C) = 1.6 + 0.72 \cdot v_{\pi}(S) - 0.18 \cdot v_{\pi}(SI)$$

$$egin{aligned}
u_{\pi}(C) &= 1.6 + 0.7 \
u_{\pi}(S) &= -0.8 + 0.7 \end{aligned}$$

$$egin{align}
u_\pi({\it C}) &= 1.6 + 0.72 \cdot
u_\pi({\it S}) - 0.18 \cdot
u_\pi({\it S}) \
u_\pi({\it S}) &= -0.8 + 0.36 \cdot
u_\pi({\it C}) + 0.54 \cdot
u_\pi({\it P})
onumber \end{array}$$

 $v_{\pi}(SI) = 0.9 \cdot v_{\pi}(C)$

 $v_{\pi}(\text{Sleep}) = 1.0[0 + 0.9 \cdot v_{\pi}(\text{Class})]$

$$= 1.6 + 0.72 \cdot v_{\pi}$$

= $-0.8 + 0.36 \cdot v_{\pi}$

$$v_{\pi}(P) = 2.1 + 0.63 \cdot v_{\pi}(SI) + 0.27 \cdot v_{\pi}(S)$$

(5)

(6)

(7)

(8)

(9)

(10)

(11)

Student MDP: Iterative Solution

Iteration 0: Initialize $v_0(s) = 0$ for all states

Iteration	Class	Study	Party	Sleep
0	0.00	0.00	0.00	0.00
1	1.60	-0.80	2.10	0.00
2	1.03	1.35	2.10	1.44
3	2.57	1.50	3.01	0.93
4	2.42	2.55	3.65	2.31
5	3.43	2.85	4.14	2.18
:	:	:	:	:
Converged	4.12	3.68	5.02	3.71

Interpretation:

- Party state has highest value (5.02) most rewarding long-term
- Class state has good value (4.12) leads to productive outcomes
- Study and Sleep have similar moderate values

When Do We Use Policy Evaluation?

Direct Applications:

- Policy Assessment: Evaluate how good a given policy is
- Comparison: Compare multiple policies
- **Debugging:** Understand policy behavior in different states

As Building Block for:

- Policy Iteration: Alternates between policy evaluation and improvement
- Value Iteration: Truncated policy evaluation (1 step)
- Actor-Critic Methods: Continuous policy evaluation
- Monte Carlo Methods: Sample-based policy evaluation

Key Insight

Policy evaluation is the **prediction** component of reinforcement learning. Most RL algorithms need some form of value function estimation.

Limitations and Challenges

Computational Limitations:

- Curse of Dimensionality: $O(|\mathcal{S}|^2)$ complexity
- Full Model Required: Need p(s', r|s, a) for all transitions
- Memory Requirements: Store value for every state

Practical Challenges:

- Large State Spaces: Millions or billions of states
- Continuous States: Infinite state spaces
- Unknown Dynamics: Model-free environments

Solutions:

- Function Approximation: Neural networks, linear functions
- Sampling Methods: Monte Carlo, Temporal Difference
- State Aggregation: Group similar states

Summary and Key Takeaways

Policy Evaluation: Core Concepts

- **Goal:** Compute $v_{\pi}(s)$ for a given policy π
- **Method:** Solve Bellman equation $v_{\pi} = r_{\pi} + \gamma P_{\pi} v_{\pi}$
- Algorithm: Iterative application of Bellman operator
- Convergence: Guaranteed for $\gamma < 1$

Practical Implementation:

- Use in-place updates for faster convergence
- Choose appropriate stopping criteria
- Consider computational complexity

Next Steps:

- Policy Improvement: How to find better policies
- Policy Iteration: Combining evaluation and improvement
- Value Iteration: More efficient dynamic programming

Questions and Discussion

Questions?

sali85@student.gsu.edu

Next: Policy Improvement and Policy Iteration