Dynamic Programming in Reinforcement Learning

Policy Evaluation (Prediction Problem)

Sarwan Ali
Department of Computer Science

Georgia State University

i@ Policy Evaluation in Dynamic Programming &2

1/20

Today's Learning Journey

@ Introduction to Policy Evaluation

© Bellman Equation for Policy Evaluation
© Iterative Policy Evaluation

@ Implementation Considerations

© Worked Example

© Applications and Extensions

2/20

What is Policy Evaluation?

Definition

Policy Evaluation (also called the prediction problem) is the task of computing the
state-value function v, (s) for a given policy 7.

Key Questions: @

@ Given a policy 7, how good is each state?

@ What is the expected return from state s
following 7? e e

@ How do we compute v, (s) efficiently?

Policy m determines transitions

3/20

Recall: State-Value Function

State-Value Function for Policy 7

Vﬂ-(S) = Eﬂ-[Gt‘St = S] = Eﬂ- [Z ’Yth—l—k—i-l’St = 5]
k=0

Components:

o G;: Return (cumulative discounted reward)
@ v: Discount factor (0 <~ <1) vz (s) tells us the expected long-term
value of being in state s and

o E.[]: Expectation under policy 7 _ {
following policy 7 thereafter.

© Riyk+1: Reward at timestep t + k+1

4/20

The Bellman Equation for v,

Bellman Equation for State-Value Function

va(s) =D _m(als) Y p(s', rls, a)lr +yva(s')]

a s'r

Intuitive Breakdown:
@ For each possible action a in state s:
o Weight by policy probability 7(als)
@ For each possible next state s’ and reward r:
o Weight by transition probability p(s’, r|s, a)
o Add immediate reward r plus discounted future value yv,(s’)

Key Property

This is a system of linear equations in the unknowns v, (s) for all s € S.

Bellman Equation: Matrix Form

For finite MDPs, we can write the Bellman equation in matrix form:

Ve =rr +7Prvs

Where:
o v,: Vector of state values [vy(s1), x(52), -, Vie(sn)] "
@ r;: Vector of expected immediate rewards under m

o P,: State transition probability matrix under 7

Closed-Form Solution

Ve =(1—9P;) s

Problem: Matrix inversion is O(n®) - impractical for large state spaces!
6/20

Example: Simple Grid World

Consider a 2 x 2 grid world with deterministic policy:
Bellman Equations:

vr(s1) = =14 yvz(s3) (1)
s 5 Vr(s2) = =1+ yvr(ss) (2)
| | Va(s3) = =1+ yvz(sa) (3)
! l Vz(sa) = 0 (terminal) (4)
3 ——su (T)

Solution with v = 0.9:
® vr(s4) =0
r = —1 except terminal 5)=-1+09x%x0=—1

o v
) V7r($2) =—-1409x0=-1
o va(s1)=—1+09x(~1)=-19

7/20

Iterative Policy Evaluation Algorithm

Since matrix inversion is expensive, use iterative methods:

Iterative Policy Evaluation

Vi1 (s) =Y _m(als) > p(s', rls, a)[r + yvi(s)]

a s'r

Key ldeas:
o Start with arbitrary initial values vy(s) for all s
@ Repeatedly apply the Bellman equation as an update rule
@ Under certain conditions, v, — v, as k — 00

Advantages: Considerations:
@ Simple to implement @ Requires many iterations
o Guaranteed convergence @ Needs full model knowledge
@ Memory efficient e Computational cost per iteration

8/20

Iterative Policy Evaluation: Pseudocode

Algorithm 1 Iterative Policy Evaluation

Require: Policy 7 to be evaluated

Require: Small threshold # > 0 determining accuracy
1: Initialize V(s) =0 for all s € S*

2: repeat

3: A<+ 0

4. foreachse Sdo

5: v+ V(s)

6 V() 3, m(als) Sy, (s rls. a)lr + V()]
7: A — max(A, |v— V(s)|)

8: end for
9: until A <6
10: return V = v,

Time Complexity: O(|S|?|A|) per iteration
Space Complexity: O(|S|)

9/20

Convergence Properties

Theorem (Convergence of lterative Policy Evaluation)

For any policy = and any initial value function vy, the sequence {vi} generated by iterative
policy evaluation converges to v, as k — co.

Why does this work?
@ The Bellman operator T, defined by:

Tev(s) => w(als) Y p(s,rls, a)r + yv(s')]
a s',r
@ Is a contraction mapping with contraction factor ~y
@ By Banach Fixed-Point Theorem, has unique fixed point v,

Rate of Convergence

v = velloo < 7¥llvo = vl

Convergence is exponentially fast with rate ~.

10/20

In-Place vs. Two-Array Updates

In-Place Method:

Two-Array Method: .
o Use single array
o Use separate arrays for v, and vy)
_ o Update states one at a time
o Update all states simultaneously
_ @ Use most recent values

@ Requires 2|S| memory _

@ Requires |S| memory

Update Rule

Update Rule
Vk+1(s) = Trvi(s)

In-place updates typically converge faster because they use more up-to-date information,
though convergence is still guaranteed.

11/20

Stopping Criteria

How do we know when to stop iterating?
@ Maximum Change Criterion:

max [vikr1(s) — vk(s)| < 0
@ Relative Change Criterion:

maxs |Vk+1(5) — vk(s)|
maxs |vk(s)]

<0

© Fixed Number of Iterations: Simply run for N iterations

Error Bound

If we stop when maxs |vkt1(s) — vk(s)| < 6, then:

Computational Complexity Analysis

Per Iteration Complexity:
o For each state s € S: O(|A| x |S])
o Total per iteration: O(|S|?|.A4])

Number of Iterations:
@ Depends on discount factor v and desired accuracy 6
o Approximately O(log(1/0)/log(1/)) iterations

Total Complexity:

124 log(1/6)
0 (0g(1/7))

Practical Implications

o Higher ~ (closer to 1) = slower convergence
o Smaller 6 (higher accuracy) = more iterations

@ Quadratic in number of states = challenging for large state spaces

Example: Student MDP

Consider a simplified model of a student’s day:

0.8,r =42
T Policy 7: Deterministic policy shown
Class Study by transition probabilities
Ar=—
0.3,r[=—1
02,r=-1| 10,r=0 0.6,r=+1
Discount factor: v = 0.9
Sleep Party
~_ Task: Compute v, (s) for each state
0.7,r =+3

14 /20

Student MDP: Bellman Equations

Setting up the system:

vz(Class) = 0.8[2 + 0.9 - v,(Study)] + 0.2[—1 + 0.9 - v;(Sleep)]

) (5)

vz(Study) = 0.4[—2 + 0.9 - v;(Class)] + 0.6[1 + 0.9 - v (Party)] (6)

vz(Party) = 0.7[3 4 0.9 - v(Sleep)] 4+ 0.3[—1 + 0.9 - v(Study)] (7)

vr(Sleep) = 1.0[0 + 0.9 - v(Class)] (8)

Simplifying:

Vr(C) =1.640.72 - v(S) — 0.18 - v(S/) (9)

Ve (S) = —0.8 + 0.36 - vr(C) + 0.54 - v (P) (10)

Ve(P) = 2.1+ 0.63 - vr(S/) + 0.27 - v(S) (11)

vz(S1) = 0.9 v.(C) (12)

Student MDP: lterative Solution

Iteration 0: Initialize vo(s) = O for all states

Iteration | Class | Study | Party | Sleep

0 0.00 0.00 0.00 | 0.00
1.60 | -0.80 | 2.10 | 0.00
1.03 1.35 210 | 1.44
2.57 1.50 3.01 | 0.93
2.42 2.55 3.65 | 231
3.43 2.85 414 | 2.18

SO W N

Converged | 4.12 | 3.68 | 5.02 | 3.71

Interpretation:
o Party state has highest value (5.02) - most rewarding long-term
o Class state has good value (4.12) - leads to productive outcomes

@ Study and Sleep have similar moderate values
16 /20

When Do We Use Policy Evaluation?

Direct Applications:
o Policy Assessment: Evaluate how good a given policy is
o Comparison: Compare multiple policies
o Debugging: Understand policy behavior in different states

As Building Block for:
o Policy Iteration: Alternates between policy evaluation and improvement
e Value lteration: Truncated policy evaluation (1 step)
@ Actor-Critic Methods: Continuous policy evaluation
o

Monte Carlo Methods: Sample-based policy evaluation

Policy evaluation is the prediction component of reinforcement learning. Most RL algorithms
need some form of value function estimation.

= = = = Ty

17/20

Limitations and Challenges

Computational Limitations:
o Curse of Dimensionality: O(|S|?) complexity
o Full Model Required: Need p(s’, r|s, a) for all transitions
o Memory Requirements: Store value for every state

Practical Challenges:
o Large State Spaces: Millions or billions of states
o Continuous States: Infinite state spaces

o Unknown Dynamics: Model-free environments

Solutions:
@ Function Approximation: Neural networks, linear functions
o Sampling Methods: Monte Carlo, Temporal Difference
o State Aggregation: Group similar states

18/20

Summary and Key Takeaways

Policy Evaluation: Core Concepts

o Goal: Compute v,(s) for a given policy

o Method: Solve Bellman equation v,; = r; + vPr vy
@ Algorithm: Iterative application of Bellman operator
o

Convergence: Guaranteed for v < 1

Practical Implementation:
@ Use in-place updates for faster convergence
@ Choose appropriate stopping criteria
o Consider computational complexity
Next Steps:
o Policy Improvement: How to find better policies
o Policy Iteration: Combining evaluation and improvement

@ Value Iteration: More efficient dynamic programming
19/20

Questions and Discussion

Questions?

sali8b@student.gsu.edu

Next: Policy Improvement and Policy Iteration

20/20

	Introduction to Policy Evaluation
	Bellman Equation for Policy Evaluation
	Iterative Policy Evaluation
	Implementation Considerations
	Worked Example
	Applications and Extensions

