Dynamic Programming in Reinforcement Learning

Policy Improvement and Policy lteration

Sarwan Ali

Department of Computer Science
Georgia State University

i@ Policy Improvement & Policy Iteration 1822

1/20

Today's Learning Journey

@ Review: Policy Evaluation

© Policy Improvement

© Policy Iteration Algorithm

@ Detailed Example

© Implementation Considerations
@ Extensions and Variations

@ Summary and Key Takeaways

2/20

Quick Review: Policy Evaluation

Policy Evaluation Problem

Given a policy 7, compute the state-value function v (s) for all states s € S.

Bellman Equation for v;:

va(s) =Y _m(als) Y p(s's rls, a)[r + va(s)]

a s'r

Iterative Policy Evaluation:

Vir1(s) = Z w(als) Z p(s’, rls,a)lr + yvi(s")]

a s',r

Policy evaluation tells us how good a given policy is, but not how to improve it.

= =

3/20

The Policy Improvement Problem

Question: Given a policy 7 and its value function v,
can we find a better policy 7'?

Intuition:
@ We know how good each state is under policy 7
@ Can we make better action choices?
@ Look ahead one step and be greedy!

ai an as

4/20

Action-Value Function (Q-Function)

Definition: The action-value function g (s, a) gives the expected return when taking action a
in state s and then following policy 7.

q7r(57 a) = Zp(sla r’sa a)[r + ’YVW(SI)]

s’,r
Relationship to State-Value Function:

Vﬂ'(s) = Zﬂ-(a|5)q7r(5’ a)

a

g=(s, a) tells us the value of taking action a in state s under policy 7. This is exactly what we
need for policy improvement!

5/20

The Policy Improvement Theorem

Theorem (Policy Improvement Theorem)

Let m and ' be two deterministic policies such that for all s € S:

Gr(s,7(5)) > va(s)

Then 7/ > m (i.e., vpi(s) > vr(s) for all s).

Proof ldea:
V() < gx(s,7'(s)) (given) (1)
= E[Rt41 + Yva(St41)|St = 5, At = 7'(5)] (2)
< E[Res1 +7Gn(Se41, 7 (5e41))[Se = 5, Ar = 7'(5)] (3)
(4)
(5)

E[Rt41 + YReq2 + ’Y2V7r(5t+2)’5t =s5,A; =7(s)]
<...< Vﬁ/(S)

Greedy Policy Improvement

Greedy Policy: Choose the action that maximizes the action-value function.

7'(s) = arg max q,(s,a) = arg maxz p(s’, rls,a)lr + vvx(s')]
a a

s’'r

Policy Improvement Step

Given policy 7 and its value function v;:
Q Compute gx(s, a) for all state-action pairs
@ Set 7/(s) = arg max, g,(s, a) for all states

@ The new policy 7’ is guaranteed to be at least as good as 7

When does improvement stop?

When 7/ = 7, we have found the optimal policy 7*!

Policy Improvement: Visual Example

Current Policy m

2 2 2,2 3.2
-2.1 -1.5 -0.8
0,1 1+——21 3.1
-1.8 -1.2 -0.5

e 0 2,0 G
-1.5 -0.8

Value Function v,

Policy Improvement: Look at each state and ask: "ls there a better action than what the
current policy suggests?”
8/20

Policy Iteration: The Complete Algorithm

Policy Iteration Algorithm

@ Initialization: Choose arbitrary policy g and set kK = 0

@ Policy Evaluation: Compute v, (solve the system of linear equations or use iterative
method)

© Policy Improvement: For each state s:

Ter1(s) = argmax > p(s', rls, a)[r + v, (5))]
a

s'r

@ Convergence Check: If 7y, 1 = 7k, stop and return 7% = 7y
© Otherwise, set k = k + 1 and go to step 2

Guaranteed Convergence

Policy iteration converges to the optimal policy 7* in a finite number of steps!

Policy Iteration: Convergence Properties

Why does Policy Iteration converge?
@ Finite MDP: Only finitely many deterministic policies exist

e Monotonic Improvement: Each iteration produces a strictly better policy (unless
already optimal)

@ No Cycles: Cannot return to a previously visited policy

Convergence Sequence:

MO —> Vg = M1 —> Vg > T2 — ... =T — V"

Time Complexity

o Policy Evaluation: O(|S|3) per iteration (solving linear system)
o Policy Improvement: O(|S||A|) per iteration
o Number of Iterations: At most |A|l°! (usually much fewer)

Policy lteration vs Value Iteration

Policy Iteration Value Iteration

Alternates between policy evaluation | Updates value function directly using Bellman
and policy improvement optimality equation

Each policy evaluation step solves ex- | Each step performs one backup of the value
actly for v, function

Fewer iterations, but each iteration is | More iterations, but each iteration is cheaper
more expensive
O(|S|3) per policy evaluation O(|S]|-A|) per iteration

Converges in finite steps Converges asymptotically

When to use which?

@ Policy Iteration: When policy evaluation is not too expensive

o Value lteration: When states space is large or when we want faster per-iteration updates

= =T = = Ty

11/20

Example: Simple Grid World

Actions: {1,],+,—} Initial Policy mg: Move right in all states
Iteration 1 - Policy Evaluation:
S1 S2 S3
Vo (S1) = 04 0.9 - v (52) (6)
S4 S5 | +1 Vg (52) = 0+ 0.9 - vy (S3) (7)
Ve (53) =0+4+09-0=0 (8)
Setup: Vo (§4) = 04 0.9 - v, (S5) 9)
@ Reward: +1 at goal, 0 elsewhere Ve, (S5) =0+0.9-1=10.9 (10)
e v=09

@ Deterministic transitions Solving: v, =[0,0,0,0.81,0.9]

12/20

Example: Policy Improvement Step

Policy Improvement for mg:

For each state, compute g, (s, a) for all actions and choose the best:

State S1:

m1(51) =] (improved!)
State S4:

71(54) =— (no change)
Continue for all states...

Gro(S1,—) =040.9-0=0
Gr,(S1,1) =0+0.9-0.81 = 0.729

Gry(S4,—) =0-+0.9-0.9 = 0.81
Grs(S4,1) =040.9-0=0

(11)
(12)

(13)
(14)

13/20

Modified Policy Iteration

Sometimes full policy evaluation is expensive. We can modify the algorithm:

Modified Policy lteration

@ Initialization: Choose arbitrary policy g and value function Vj

@ Partial Policy Evaluation: Perform k steps of iterative policy evaluation:
Viqir=T"V; fori=0,1,...,k—1

O Policy Improvement: Tpey(s) = argmax, > o, p(s', rls, a)[r + v Vi(s')]

@ Repeat steps 2-3 until convergence

Special Cases:
@ k = 1: Value lteration
@ k = oo: Standard Policy lteration

o k = intermediate: Compromise between the two

14 /20

Implementation Tips

Policy Evaluation Implementation:
o lterative Method: Use convergence threshold 0
o In-place Updates: Can speed up convergence
o Linear System: For small state spaces, solve V = R + yPV directly

Policy Improvement Implementation:
e Store policy as array: «[s] = a
@ Handle ties in arg max consistently
@ Check for policy stability: Thew = Tolg

Computational Optimizations:
o Sparse Representations: For large, sparse transition matrices
o Prioritized Sweeping: Focus updates on important states
@ Asynchronous Updates: Update states in different orders

15/20

Pseudocode: Policy lteration

def policy_iteration(mdp, gamma=0.9, theta=le—6):
Initialize
V = np.zeros(mdp. num_states)

pi = np.random.choice(mdp.num_actions, mdp.num_states)

while True:
Policy Evaluation
while True:

delta =0
for s in range(mdp.num_states):
v = V[s]

V[s] = sum(mdp.P[s][pi[s]][s-prime] =
(mdp.R[s][pi[s]][s-prime] + gamma * V[s_prime])
for s_prime in range(mdp.num_states))

delta max(delta, abs(v — V[s]))
if delta < theta:
break

Policy Improvement
policy_stable = True
for s in range(mdp.num_states):
old_action = pi[s]
pi[s] = np.argmax([sum(mdp.P[s][a][s-prime] =*
(mdp.R[s][a][s-prime] + gamma * V[s_prime])
for s_prime in range(mdp. num_states))
for a in range(mdp.num_actions)])
if old_action != pi[s]:
policy_stable = False
if policy_stable:
return V, pi

Generalized Policy Iteration (GPI)

Key Idea: Policy evaluation and policy improvement can interact

in more flexible ways.
GPI Principle:

@ Evaluation: Make value function consistent with current policy Evaluation
@ Improvement: Make policy greedy w.r.t current value function N
@ These processes can be interleaved in various ways GPI AN
Examples of GPI: ™~
Improvement

@ Policy Iteration

@ Value lteration

@ Modified Policy Iteration

@ Asynchronous DP methods

Convergence Guarantee
Under GPI, both the value function and policy converge to optimal values, regardless of the
specific interleaving pattern.

17/20

Stochastic Policies

So far we considered deterministic policies. What about stochastic policies?
Stochastic Policy: 7(a|s) = probability of taking action a in state s

Policy Improvement for Stochastic Policies:

(als) = 1 ifa= a.\rg maxy (s, a’)
0 otherwise

Policy Improvement Theorem (General)

For any stochastic policies 7 and 7/, if gx(s, a) > vx(s) for all s, a such that «’(a|s) > 0, then
Vi (8) > vr(s) for all s.

Practical Note: In finite MDPs, there always exists a deterministic optimal policy, so we can
focus on deterministic policies.

18/20

Summary: Policy Improvement & Policy lteration

Key Concepts:

Policy Improvement: Given v;, create better policy by acting greedily
Policy lteration: Alternate between evaluation and improvement
Convergence: Guaranteed to find optimal policy in finite steps

GPI: General framework for interleaving evaluation and improvement
Important Formulas:

G- (s,a) = Z p(s’, rls, a)lr + vvx(s")] (15)
7'(s) = arg max gr(s,a) (16)
Vo (s) > vr(s) (Policy Improvement Theorem) (17)

Computational Complexity:
e Policy Evaluation: O(|S|3) or O(|S|?|.A|) per iteration
e Policy Improvement: O(|S||.A|) per iteration

o Number of policy iterations: < |.A|l°! (typically much smaller)
19/20

What’s Coming Next:
@ Value lteration: Direct optimization of value function
@ Asynchronous Dynamic Programming: Flexible update schedules
o Approximate Dynamic Programming: Handling large state spaces
o Model-Free Methods: When we don’t know the MDP model

Practice Problems:
@ Implement policy iteration for grid world problems
o Compare convergence rates of policy iteration vs value iteration
@ Analyze the effect of discount factor on convergence
@ Implement modified policy iteration with different k values

© Questions?

20/20

	Review: Policy Evaluation
	Policy Improvement
	Policy Iteration Algorithm
	Detailed Example
	Implementation Considerations
	Extensions and Variations
	Summary and Key Takeaways

