
Dynamic Programming in Reinforcement Learning
Policy Improvement and Policy Iteration

Sarwan Ali

Department of Computer Science
Georgia State University

Æ Policy Improvement & Policy Iteration ¢

1 / 20

Today’s Learning Journey

1 Review: Policy Evaluation

2 Policy Improvement

3 Policy Iteration Algorithm

4 Detailed Example

5 Implementation Considerations

6 Extensions and Variations

7 Summary and Key Takeaways

2 / 20

Quick Review: Policy Evaluation

Policy Evaluation Problem

Given a policy π, compute the state-value function vπ(s) for all states s ∈ S.

Bellman Equation for vπ:

vπ(s) =
∑
a

π(a|s)
∑
s′,r

p(s ′, r |s, a)[r + γvπ(s
′)]

Iterative Policy Evaluation:

vk+1(s) =
∑
a

π(a|s)
∑
s′,r

p(s ′, r |s, a)[r + γvk(s
′)]

Key Insight

Policy evaluation tells us how good a given policy is, but not how to improve it.

3 / 20

The Policy Improvement Problem

Question: Given a policy π and its value function vπ,
can we find a better policy π′?

Intuition:

We know how good each state is under policy π

Can we make better action choices?

Look ahead one step and be greedy!

s

s1 s2 s3

a1 a2 a3

vπ(s1) vπ(s2) vπ(s3)

4 / 20

Action-Value Function (Q-Function)

Definition: The action-value function qπ(s, a) gives the expected return when taking action a
in state s and then following policy π.

qπ(s, a) =
∑
s′,r

p(s ′, r |s, a)[r + γvπ(s
′)]

Relationship to State-Value Function:

vπ(s) =
∑
a

π(a|s)qπ(s, a)

Key Insight

qπ(s, a) tells us the value of taking action a in state s under policy π. This is exactly what we
need for policy improvement!

5 / 20

The Policy Improvement Theorem

Theorem (Policy Improvement Theorem)

Let π and π′ be two deterministic policies such that for all s ∈ S:

qπ(s, π
′(s)) ≥ vπ(s)

Then π′ ≥ π (i.e., vπ′(s) ≥ vπ(s) for all s).

Proof Idea:

vπ(s) ≤ qπ(s, π
′(s)) (given) (1)

= E[Rt+1 + γvπ(St+1)|St = s,At = π′(s)] (2)

≤ E[Rt+1 + γqπ(St+1, π
′(St+1))|St = s,At = π′(s)] (3)

= E[Rt+1 + γRt+2 + γ2vπ(St+2)|St = s,At = π′(s)] (4)

≤ . . . ≤ vπ′(s) (5)

6 / 20

Greedy Policy Improvement

Greedy Policy: Choose the action that maximizes the action-value function.

π′(s) = argmax
a

qπ(s, a) = argmax
a

∑
s′,r

p(s ′, r |s, a)[r + γvπ(s
′)]

Policy Improvement Step

Given policy π and its value function vπ:

1 Compute qπ(s, a) for all state-action pairs

2 Set π′(s) = argmaxa qπ(s, a) for all states

3 The new policy π′ is guaranteed to be at least as good as π

When does improvement stop?

When π′ = π, we have found the optimal policy π∗!

7 / 20

Policy Improvement: Visual Example

0,0

0,1

0,2

1,0

1,1

1,2

2,0

2,1

2,2

3,0

3,1

3,2

G

-2.1 -1.5 -0.8

-1.8 -1.2 -0.5

-1.5 -0.8

Current Policy π

Value Function vπ

Policy Improvement: Look at each state and ask: ”Is there a better action than what the
current policy suggests?”

8 / 20

Policy Iteration: The Complete Algorithm

Policy Iteration Algorithm

1 Initialization: Choose arbitrary policy π0 and set k = 0

2 Policy Evaluation: Compute vπk
(solve the system of linear equations or use iterative

method)

3 Policy Improvement: For each state s:

πk+1(s) = argmax
a

∑
s′,r

p(s ′, r |s, a)[r + γvπk
(s ′)]

4 Convergence Check: If πk+1 = πk , stop and return π∗ = πk
5 Otherwise, set k = k + 1 and go to step 2

Guaranteed Convergence

Policy iteration converges to the optimal policy π∗ in a finite number of steps!

9 / 20

Policy Iteration: Convergence Properties

Why does Policy Iteration converge?

Finite MDP: Only finitely many deterministic policies exist

Monotonic Improvement: Each iteration produces a strictly better policy (unless
already optimal)

No Cycles: Cannot return to a previously visited policy

Convergence Sequence:

π0 → vπ0 → π1 → vπ1 → π2 → . . .→ π∗ → v∗

Time Complexity

Policy Evaluation: O(|S|3) per iteration (solving linear system)

Policy Improvement: O(|S||A|) per iteration
Number of Iterations: At most |A||S| (usually much fewer)

10 / 20

Policy Iteration vs Value Iteration

Policy Iteration Value Iteration
Alternates between policy evaluation
and policy improvement

Updates value function directly using Bellman
optimality equation

Each policy evaluation step solves ex-
actly for vπ

Each step performs one backup of the value
function

Fewer iterations, but each iteration is
more expensive

More iterations, but each iteration is cheaper

O(|S|3) per policy evaluation O(|S||A|) per iteration
Converges in finite steps Converges asymptotically

When to use which?

Policy Iteration: When policy evaluation is not too expensive

Value Iteration: When states space is large or when we want faster per-iteration updates

11 / 20

Example: Simple Grid World

S1 S2 S3

S4 S5 +1

Actions: {↑, ↓,←,→}

Setup:

Reward: +1 at goal, 0 elsewhere

γ = 0.9

Deterministic transitions

Initial Policy π0: Move right in all states

Iteration 1 - Policy Evaluation:

vπ0(S1) = 0 + 0.9 · vπ0(S2) (6)

vπ0(S2) = 0 + 0.9 · vπ0(S3) (7)

vπ0(S3) = 0 + 0.9 · 0 = 0 (8)

vπ0(S4) = 0 + 0.9 · vπ0(S5) (9)

vπ0(S5) = 0 + 0.9 · 1 = 0.9 (10)

Solving: vπ0 = [0, 0, 0, 0.81, 0.9]

12 / 20

Example: Policy Improvement Step

Policy Improvement for π0:
For each state, compute qπ0(s, a) for all actions and choose the best:

State S1:

qπ0(S1,→) = 0 + 0.9 · 0 = 0 (11)

qπ0(S1, ↓) = 0 + 0.9 · 0.81 = 0.729 (12)

π1(S1) =↓ (improved!)

State S4:

qπ0(S4,→) = 0 + 0.9 · 0.9 = 0.81 (13)

qπ0(S4, ↑) = 0 + 0.9 · 0 = 0 (14)

π1(S4) =→ (no change)
Continue for all states...

13 / 20

Modified Policy Iteration

Sometimes full policy evaluation is expensive. We can modify the algorithm:

Modified Policy Iteration

1 Initialization: Choose arbitrary policy π0 and value function V0

2 Partial Policy Evaluation: Perform k steps of iterative policy evaluation:

Vi+1 = TπVi for i = 0, 1, . . . , k − 1

3 Policy Improvement: πnew (s) = argmaxa
∑

s′,r p(s
′, r |s, a)[r + γVk(s

′)]

4 Repeat steps 2-3 until convergence

Special Cases:

k = 1: Value Iteration

k =∞: Standard Policy Iteration

k = intermediate: Compromise between the two

14 / 20

Implementation Tips

Policy Evaluation Implementation:

Iterative Method: Use convergence threshold θ

In-place Updates: Can speed up convergence

Linear System: For small state spaces, solve V = R + γPV directly

Policy Improvement Implementation:

Store policy as array: π[s] = a

Handle ties in argmax consistently

Check for policy stability: πnew = πold

Computational Optimizations:

Sparse Representations: For large, sparse transition matrices

Prioritized Sweeping: Focus updates on important states

Asynchronous Updates: Update states in different orders
15 / 20

Pseudocode: Policy Iteration

def p o l i c y i t e r a t i o n (mdp , gamma=0.9 , t h e t a=1e−6):
I n i t i a l i z e
V = np . z e r o s (mdp . num sta te s)
p i = np . random . cho i c e (mdp . num act ions , mdp . num sta te s)

wh i l e True :
Po l i c y Ev a l u a t i o n
wh i l e True :

d e l t a = 0
f o r s i n range (mdp . num sta te s) :

v = V[s]
V [s] = sum (mdp .P [s] [p i [s]] [s p r ime] ∗

(mdp .R [s] [p i [s]] [s p r ime] + gamma ∗ V[s p r ime])
f o r s p r ime i n range (mdp . num sta te s))

d e l t a = max(d e l t a , abs (v − V[s]))
i f d e l t a < t h e t a :

break

Po l i c y Improvement
p o l i c y s t a b l e = True
f o r s i n range (mdp . num sta te s) :

o l d a c t i o n = p i [s]
p i [s] = np . argmax ([sum (mdp .P [s] [a] [s p r ime] ∗

(mdp .R [s] [a] [s p r ime] + gamma ∗ V[s p r ime])
f o r s p r ime i n range (mdp . num sta te s))

f o r a i n range (mdp . num act ions)])
i f o l d a c t i o n != p i [s] :

p o l i c y s t a b l e = Fa l s e
i f p o l i c y s t a b l e :

r e t u r n V, p i
16 / 20

Generalized Policy Iteration (GPI)

Key Idea: Policy evaluation and policy improvement can interact
in more flexible ways.
GPI Principle:

Evaluation: Make value function consistent with current policy

Improvement: Make policy greedy w.r.t current value function

These processes can be interleaved in various ways

Examples of GPI:

Policy Iteration

Value Iteration

Modified Policy Iteration

Asynchronous DP methods

Evaluation

Improvement

vπ vπ′

π π′

GPI v∗, π∗

Convergence Guarantee

Under GPI, both the value function and policy converge to optimal values, regardless of the
specific interleaving pattern.

17 / 20

Stochastic Policies

So far we considered deterministic policies. What about stochastic policies?
Stochastic Policy: π(a|s) = probability of taking action a in state s

Policy Improvement for Stochastic Policies:

π′(a|s) =

{
1 if a = argmaxa′ qπ(s, a

′)

0 otherwise

Policy Improvement Theorem (General)

For any stochastic policies π and π′, if qπ(s, a) ≥ vπ(s) for all s, a such that π′(a|s) > 0, then
vπ′(s) ≥ vπ(s) for all s.

Practical Note: In finite MDPs, there always exists a deterministic optimal policy, so we can
focus on deterministic policies.

18 / 20

Summary: Policy Improvement & Policy Iteration

Key Concepts:

Policy Improvement: Given vπ, create better policy by acting greedily
Policy Iteration: Alternate between evaluation and improvement
Convergence: Guaranteed to find optimal policy in finite steps
GPI: General framework for interleaving evaluation and improvement

Important Formulas:

qπ(s, a) =
∑
s′,r

p(s ′, r |s, a)[r + γvπ(s
′)] (15)

π′(s) = argmax
a

qπ(s, a) (16)

vπ′(s) ≥ vπ(s) (Policy Improvement Theorem) (17)

Computational Complexity:

Policy Evaluation: O(|S|3) or O(|S|2|A|) per iteration
Policy Improvement: O(|S||A|) per iteration
Number of policy iterations: ≤ |A||S| (typically much smaller)

19 / 20

Next Steps

What’s Coming Next:

Value Iteration: Direct optimization of value function

Asynchronous Dynamic Programming: Flexible update schedules

Approximate Dynamic Programming: Handling large state spaces

Model-Free Methods: When we don’t know the MDP model

Practice Problems:

Implement policy iteration for grid world problems

Compare convergence rates of policy iteration vs value iteration

Analyze the effect of discount factor on convergence

Implement modified policy iteration with different k values

® Questions?

20 / 20

	Review: Policy Evaluation
	Policy Improvement
	Policy Iteration Algorithm
	Detailed Example
	Implementation Considerations
	Extensions and Variations
	Summary and Key Takeaways

