Introduction to Reinforcement Learning

Dynamic Programming - Value Iteration

Sarwan Ali

Department of Computer Science
Georgia State University

f& Dynamic Programming Methods 182

1/22

Today's Learning Journey

© Review: Bellman Equations

© Value Iteration Algorithm

© Convergence Theory

@ Implementation Details

© Worked Example

@ Computational Complexity

e Advantages and Limitations

© Comparison with Policy Iteration

e Extensions and Applications
@ Summary

2/22

Bellman Equations Recap

State Value Function:

Ve(s) = Ex[G|S; = 5] (1)
= Ez[Re+1 + 7Gr41] St = 9] (2)
= w(als)) p(s'rls. a)lr +va(s)] (3)

Optimal State Value Function:
vi(s) = m;?anE[RtJrl + Yvi(Se41) |5t = 5, Ar = &) (4)
=max Y p(s, rls, a)lr + ywls')] (5)

The Bellman optimality equation provides the foundation for value iteration I

- - = = e

3/22

Value lteration: Core ldea

Value lteration turns the Bellman optimality equation into an iterative update rule I

Instead of solving: v.(s) = max,) ., p(s', rls, a)[r +vvi(s')]
We iterate: vii1(s) =max, > ., p(s', rls,a)[r + yvk(s')]

Key Properties: Requirements:
o Model-based approach o Complete MDP model
o Guaranteed convergence o Finite state/action spaces
e Finds optimal policy @ Discount factor v < 1

4/22

Value lteration Algorithm

Algorithm 1 Value Iteration
Require: MDP (S, A, P, R,~), threshold 6 > 0
1. Initialize V(s) =0 forallse S

2: repeat

3: A+0

4. for each state s € S do

5: vV \/(S)

6: V(s) < maxa > g, p(s's rls, a)[r + vV (s')]
7: A+ max(A, v — V(s)|)

8: end for
9: until A <6
10: Output: Optimal policy m.(s) = argmax, Y., p(s', r|s, a)[r +vV(s')]

Time Complexity

O(|S|?|A|) per iteration, polynomial convergence

Value Iteration: Step-by-Step Breakdown

Step 1: Initialization
e Set Vp(s) = 0 for all states s
@ Choose convergence threshold 6
Step 2: Value Update (Bellman Backup)

Vis1(s) = max Y P(s']s, a)[R(s, a,s') + 7 Vi(s)] (6)

Step 3: Convergence Check
o Compute A = maxs | Viy1(s) — Vi(s)|
o Stopif A< 6

Step 4: Policy Extraction

m.(s) = arg m;xz P(s'|s,a)[R(s,a,s") + v Vi(s)] (7)

6/22

Convergence Guarantees

Theorem (Value Iteration Convergence)

For any finite MDP with v < 1, value iteration converges to the unique optimal value function
Vi

Proof Sketch:
@ The Bellman operator T is a contraction mapping
@ For any value functions u, v: || Tu — Tv||so < ||t — V]|oo
© By Banach Fixed Point Theorem, T has unique fixed point v,
@ Value iteration: vy = Tvg converges to v,

Rate of Convergence

||Vk_V*||oo§7kHVO_V*||oo (8)

Geometric convergence with rate ~

Error Bounds and Stopping Criteria

Practical Question: When should we stop the algorithm?

Error Bound

If [|Vk+1 — Vk||oo < 6, then:

0
Vel € —— 9
lve = vl < 77 9)
Policy Loss Bound:
o Let 7, be greedy policy w.r.t. vi
o If ||vk — Vil|oo < €, then:
2ve

(10)

Y

Practical Insight

Small value function errors lead to near-optimal policies

8/22

Synchronous vs Asynchronous Updates

Synchronous Value lteration: Asynchronous Value Iteration:
o Update all states simultaneously @ Update states one at a time
o Use Vi to compute Vi1 @ Use most recent values
@ Requires two arrays @ In-place updates
@ Standard algorithm o Often faster convergence

Pseudocode Pseudocode
for s in states: for s in states:
Vonew[s] = max_a Q(s,a) V[s] = max_a Q(s,a)
V = V._new // immediately use new V[s]

Both versions converge to v, but asynchronous often faster in practice I

9/22

Value lteration Variants

1. Gauss-Seidel Value Iteration
o Update states in systematic order
@ Use newest available values
o Faster convergence than Jacobi method
2. Prioritized Sweeping
@ Update states with largest Bellman error first
@ Maintain priority queue of states
@ Much faster for sparse problems
3. Real-Time Value lteration
o Update only visited states
@ Useful for large state spaces
@ Agent-centric approach

All variants maintain convergence guarantees while improving efficiency

= ™ = >

Grid World Example

Problem Setup:
@ 3 x 3 grid world

e Start: S5, Goal: T (reward +10)
@ Obstacle: X (impassable)
s1 52 T @ Actions: Up, Down, Left, Right
S3 X S4 @ Step reward: -1
e 6 S7 e v=209
Transition Model:

@ 0.8 prob: intended direction
@ 0.1 prob: each perpendicular direction

o Hit wall: stay in place

11/22

Grid World: Value lteration Steps

Iteration 0: Iteration 1: Iteration 2: Iteration 5:
0/01|0 -11-1109 -19 | 6.4 9 46 64| 9
0| X |0 10X 19 -19] X 6.4 23| X | 64
0/0]|0 -1 -1 -1 -19(-19 | -1.9 0412346

Value Update Example (S6):

V1(56) = max{Q(S6, up), Q(S6, down), Q(S6, left), Q(S6, right) } (11)
= max{—1,—1,—1,6.4} = 6.4 (12)

Where: Q(S6, right) = =1+ 0.9 x [0.8 x 9+ 0.1 x (—1) 4+ 0.1 x (—1)] = 6.4

12/22

Grid World: Optimal Policy

&OAL

6.1 7.4 10 %
43 X 7.4 [
24 43 6.1

Final Values:
Optimal Policy:
Policy Extraction:

m.(s) = arg maaxz P(s'|s,a)[R +vV(s')] (13)

13/22

Complexity Analysis

Time Complexity per Iteration:

o For each state s: O(|A| x |S|) operations

o Total per iteration: O(|S| x |A| x |S|) = O(|S|?|A|)
Number of lterations:

o Convergence rate: O(log(1/€)/log(1/7))

e For e =107% ~ = 0.9: ~ 131 iterations

Total Complexity:
|SI?IA| 1
dCEE0) e

For n state variables with k values each: |S| = k" (exponential!)

Curse of Dimensionality

14 /22

Memory Requirements

Space Complexity:
e Value function: O(|S])
o Transition model: O(|S|?|Al)
e Policy: O(|S])
Optimization Techniques:
@ In-place updates: Reduce memory by half
@ Sparse representations: For structured problems
© Function approximation: For large state spaces

@ State abstraction: Group similar states

Practical Limits

o Tabular VI: ~ 10° states (modern computers)

@ Beyond this: Need approximation methods

Value lteration: Strengths

Guaranteed convergence to optimal solution

Simple to implement and understand
No policy needed during learning
Anytime algorithm: can stop early for approximate solution

Parallelizable: states can be updated independently

Memory efficient: only needs value function

Mathematical Elegance

@ Direct implementation of Bellman optimality equation

o Clear convergence theory and error bounds

o Foundation for many advanced RL algorithms

16 /22

Value lteration: Limitations

Major Limitations

o Requires complete MDP model (P, R)

Curse of dimensionality: O(|S|?|A|) per iteration
@ Only works for finite state/action spaces

o Slow for large discount factors v ~ 1
(]

No online learning: must know environment model

When VI Struggles:
e Continuous state/action spaces
@ Unknown environment dynamics
o Very large state spaces (> 10° states)
@ Real-time applications requiring fast responses

Function approximation, sampling methods, model-free approaches L

Y722

Value lteration vs Policy Iteration

Aspect Value lteration Policy lteration
Updates Value function only | Policy 4+ Value function
Convergence O(log(1/¢)) Fewer iterations
Per iteration O(|S?|A]) O(|SI® + |S[2|A])
Memory o(lS1) o(151)
Implementation Simpler More complex
Early stopping | Good approx. policy Poor policy

When to use each:
@ Value Iteration: When you want simplicity, anytime behavior

o Policy Iteration: When exact solution needed, small state spaces

18/22

Value lteration Extensions

1. Approximate Value lteration
o Use function approximation: V/(s) = V(s; 6)
o Neural networks, linear functions, etc.
@ Enables large/continuous state spaces
2. Asynchronous Value Iteration
o Update states in any order
@ Real-time dynamic programming
@ Prioritized sweeping variants
3. Multi-objective Value lteration
@ Vector-valued rewards and values
o Pareto-optimal policies

@ Applications in robotics, finance

19/22

Real-World Applications

1. Game Playing
@ Chess, Go, Backgammon endgames
@ Perfect information games
@ Tablebase generation
2. Robotics
e Path planning in discrete grids
@ Navigation with known maps
@ Manipulation planning
3. Operations Research
o Inventory management
@ Queueing systems optimization
o Maintenance scheduling
4. Finance
@ Portfolio optimization
@ Options pricing (American options)
@ Risk management 20/22

Key Takeaways

Value Iteration Algorithm

o Core idea: lteratively apply Bellman optimality operator

o Convergence: Guaranteed for finite MDPs with v < 1
o Complexity: O(|S|?|A|) per iteration

v

Theoretical Foundation

@ Based on contraction mapping theorem

o Geometric convergence rate -y
o Clear error bounds and stopping criteria

v

Practical Considerations

@ Works well for moderate-sized problems

@ Requires complete environment model

4

@ Foundation for more advanced RL methods

What'’s Coming Next:

o Policy Iteration: Alternative DP approach

o Generalized Policy Iteration: Unified framework
@ Monte Carlo Methods: Model-free approaches
o

Temporal Difference Learning: Online model-free methods

Practice Problems:
@ Implement value iteration for small grid worlds
o Analyze convergence for different values
@ Compare with policy iteration on same problems
o

Explore asynchronous update schemes

© Questions?

22/22

	Review: Bellman Equations
	Value Iteration Algorithm
	Convergence Theory
	Implementation Details
	Worked Example
	Computational Complexity
	Advantages and Limitations
	Comparison with Policy Iteration
	Extensions and Applications
	Summary

