
Introduction to Reinforcement Learning
Dynamic Programming - Value Iteration

Sarwan Ali

Department of Computer Science
Georgia State University

y Dynamic Programming Methods ¢

1 / 22

Today’s Learning Journey

1 Review: Bellman Equations

2 Value Iteration Algorithm

3 Convergence Theory

4 Implementation Details

5 Worked Example

6 Computational Complexity

7 Advantages and Limitations

8 Comparison with Policy Iteration

9 Extensions and Applications

10 Summary

2 / 22

Bellman Equations Recap

State Value Function:

vπ(s) = Eπ[Gt |St = s] (1)

= Eπ[Rt+1 + γGt+1|St = s] (2)

=
∑
a

π(a|s)
∑
s′,r

p(s ′, r |s, a)[r + γvπ(s
′)] (3)

Optimal State Value Function:

v∗(s) = max
a

E[Rt+1 + γv∗(St+1)|St = s,At = a] (4)

= max
a

∑
s′,r

p(s ′, r |s, a)[r + γv∗(s
′)] (5)

Key Insight

The Bellman optimality equation provides the foundation for value iteration

3 / 22

Value Iteration: Core Idea

Principle

Value Iteration turns the Bellman optimality equation into an iterative update rule

Instead of solving: v∗(s) = maxa
∑

s′,r p(s
′, r |s, a)[r + γv∗(s

′)]
We iterate: vk+1(s) = maxa

∑
s′,r p(s

′, r |s, a)[r + γvk(s
′)]

Key Properties:

Model-based approach

Guaranteed convergence

Finds optimal policy

Requirements:

Complete MDP model

Finite state/action spaces

Discount factor γ < 1

4 / 22

Value Iteration Algorithm

Algorithm 1 Value Iteration

Require: MDP (S ,A,P,R, γ), threshold θ > 0
1: Initialize V (s) = 0 for all s ∈ S
2: repeat
3: ∆← 0
4: for each state s ∈ S do
5: v ← V (s)
6: V (s)← maxa

∑
s′,r p(s

′, r |s, a)[r + γV (s ′)]
7: ∆← max(∆, |v − V (s)|)
8: end for
9: until ∆ < θ

10: Output: Optimal policy π∗(s) = argmaxa
∑

s′,r p(s
′, r |s, a)[r + γV (s ′)]

Time Complexity

O(|S |2|A|) per iteration, polynomial convergence
5 / 22

Value Iteration: Step-by-Step Breakdown

Step 1: Initialization

Set V0(s) = 0 for all states s

Choose convergence threshold θ

Step 2: Value Update (Bellman Backup)

Vk+1(s) = max
a

∑
s′

P(s ′|s, a)[R(s, a, s ′) + γVk(s
′)] (6)

Step 3: Convergence Check

Compute ∆ = maxs |Vk+1(s)− Vk(s)|
Stop if ∆ < θ

Step 4: Policy Extraction

π∗(s) = argmax
a

∑
s′

P(s ′|s, a)[R(s, a, s ′) + γV∗(s
′)] (7)

6 / 22

Convergence Guarantees

Theorem (Value Iteration Convergence)

For any finite MDP with γ < 1, value iteration converges to the unique optimal value function
v∗.

Proof Sketch:
1 The Bellman operator T is a contraction mapping
2 For any value functions u, v : ||Tu − Tv ||∞ ≤ γ||u − v ||∞
3 By Banach Fixed Point Theorem, T has unique fixed point v∗
4 Value iteration: vk+1 = Tvk converges to v∗

Rate of Convergence

||vk − v∗||∞ ≤ γk ||v0 − v∗||∞ (8)

Geometric convergence with rate γ

7 / 22

Error Bounds and Stopping Criteria

Practical Question: When should we stop the algorithm?

Error Bound

If ||vk+1 − vk ||∞ < θ, then:

||vk − v∗||∞ ≤
θ

1− γ
(9)

Policy Loss Bound:

Let πk be greedy policy w.r.t. vk
If ||vk − v∗||∞ ≤ ϵ, then:

||v∗ − vπk
||∞ ≤

2γϵ

1− γ
(10)

Practical Insight

Small value function errors lead to near-optimal policies

8 / 22

Synchronous vs Asynchronous Updates

Synchronous Value Iteration:

Update all states simultaneously

Use Vk to compute Vk+1

Requires two arrays

Standard algorithm

Pseudocode
for s in states:

V new[s] = max a Q(s,a)

V = V new

Asynchronous Value Iteration:

Update states one at a time

Use most recent values

In-place updates

Often faster convergence

Pseudocode
for s in states:

V[s] = max a Q(s,a)

// immediately use new V[s]

Note

Both versions converge to v∗, but asynchronous often faster in practice

9 / 22

Value Iteration Variants

1. Gauss-Seidel Value Iteration

Update states in systematic order
Use newest available values
Faster convergence than Jacobi method

2. Prioritized Sweeping

Update states with largest Bellman error first
Maintain priority queue of states
Much faster for sparse problems

3. Real-Time Value Iteration

Update only visited states
Useful for large state spaces
Agent-centric approach

Key Insight

All variants maintain convergence guarantees while improving efficiency

10 / 22

Grid World Example

S1 S2 T

S3 X S4

S5 S6 S7S

Problem Setup:

3× 3 grid world

Start: S5, Goal: T (reward +10)

Obstacle: X (impassable)

Actions: Up, Down, Left, Right

Step reward: -1

γ = 0.9

Transition Model:

0.8 prob: intended direction

0.1 prob: each perpendicular direction

Hit wall: stay in place

11 / 22

Grid World: Value Iteration Steps

Iteration 0:
0 0 0

0 X 0

0 0 0

Iteration 1:
-1 -1 9

-1 X 9

-1 -1 -1

Iteration 2:
-1.9 6.4 9

-1.9 X 6.4

-1.9 -1.9 -1.9

Iteration 5:
4.6 6.4 9

2.3 X 6.4

0.4 2.3 4.6

Value Update Example (S6):

V1(S6) = max{Q(S6, up),Q(S6, down),Q(S6, left),Q(S6, right)} (11)

= max{−1,−1,−1, 6.4} = 6.4 (12)

Where: Q(S6, right) = −1 + 0.9× [0.8× 9 + 0.1× (−1) + 0.1× (−1)] = 6.4

12 / 22

Grid World: Optimal Policy

Final Values:

6.1 7.4 10

4.3 X 7.4

2.4 4.3 6.1

Optimal Policy:

GOAL

X

Policy Extraction:

π∗(s) = argmax
a

∑
s′

P(s ′|s, a)[R + γV (s ′)] (13)

13 / 22

Complexity Analysis

Time Complexity per Iteration:

For each state s: O(|A| × |S |) operations
Total per iteration: O(|S | × |A| × |S |) = O(|S |2|A|)

Number of Iterations:

Convergence rate: O(log(1/ϵ)/ log(1/γ))

For ϵ = 10−6, γ = 0.9: ≈ 131 iterations

Total Complexity:

O

(
|S |2|A|
log(1/γ)

log

(
1

ϵ

))
(14)

Curse of Dimensionality

For n state variables with k values each: |S | = kn (exponential!)

14 / 22

Memory Requirements

Space Complexity:

Value function: O(|S |)
Transition model: O(|S |2|A|)
Policy: O(|S |)

Optimization Techniques:

1 In-place updates: Reduce memory by half

2 Sparse representations: For structured problems

3 Function approximation: For large state spaces

4 State abstraction: Group similar states

Practical Limits

Tabular VI: ∼ 106 states (modern computers)

Beyond this: Need approximation methods

15 / 22

Value Iteration: Strengths

Advantages

Guaranteed convergence to optimal solution

Simple to implement and understand

No policy needed during learning

Anytime algorithm: can stop early for approximate solution

Parallelizable: states can be updated independently

Memory efficient: only needs value function

Mathematical Elegance

Direct implementation of Bellman optimality equation

Clear convergence theory and error bounds

Foundation for many advanced RL algorithms

16 / 22

Value Iteration: Limitations

Major Limitations

Requires complete MDP model (P,R)

Curse of dimensionality: O(|S |2|A|) per iteration
Only works for finite state/action spaces

Slow for large discount factors γ ≈ 1

No online learning: must know environment model

When VI Struggles:

Continuous state/action spaces
Unknown environment dynamics
Very large state spaces (> 106 states)
Real-time applications requiring fast responses

Solutions

Function approximation, sampling methods, model-free approaches
17 / 22

Value Iteration vs Policy Iteration

Aspect Value Iteration Policy Iteration
Updates Value function only Policy + Value function

Convergence O(log(1/ϵ)) Fewer iterations

Per iteration O(|S |2|A|) O(|S |3 + |S |2|A|)
Memory O(|S |) O(|S |)
Implementation Simpler More complex

Early stopping Good approx. policy Poor policy

When to use each:

Value Iteration: When you want simplicity, anytime behavior

Policy Iteration: When exact solution needed, small state spaces

18 / 22

Value Iteration Extensions

1. Approximate Value Iteration

Use function approximation: V (s) ≈ V̂ (s; θ)

Neural networks, linear functions, etc.

Enables large/continuous state spaces

2. Asynchronous Value Iteration

Update states in any order

Real-time dynamic programming

Prioritized sweeping variants

3. Multi-objective Value Iteration

Vector-valued rewards and values

Pareto-optimal policies

Applications in robotics, finance

19 / 22

Real-World Applications

1. Game Playing

Chess, Go, Backgammon endgames
Perfect information games
Tablebase generation

2. Robotics

Path planning in discrete grids
Navigation with known maps
Manipulation planning

3. Operations Research

Inventory management
Queueing systems optimization
Maintenance scheduling

4. Finance

Portfolio optimization
Options pricing (American options)
Risk management 20 / 22

Key Takeaways

Value Iteration Algorithm

Core idea: Iteratively apply Bellman optimality operator

Convergence: Guaranteed for finite MDPs with γ < 1

Complexity: O(|S |2|A|) per iteration

Theoretical Foundation

Based on contraction mapping theorem

Geometric convergence rate γ

Clear error bounds and stopping criteria

Practical Considerations

Works well for moderate-sized problems

Requires complete environment model

Foundation for more advanced RL methods
21 / 22

Next Steps

What’s Coming Next:

Policy Iteration: Alternative DP approach

Generalized Policy Iteration: Unified framework

Monte Carlo Methods: Model-free approaches

Temporal Difference Learning: Online model-free methods

Practice Problems:

Implement value iteration for small grid worlds

Analyze convergence for different γ values

Compare with policy iteration on same problems

Explore asynchronous update schemes

® Questions?

22 / 22

	Review: Bellman Equations
	Value Iteration Algorithm
	Convergence Theory
	Implementation Details
	Worked Example
	Computational Complexity
	Advantages and Limitations
	Comparison with Policy Iteration
	Extensions and Applications
	Summary

