Introduction to Reinforcement Learning

Dynamic Programming - Value Iteration

Sarwan Ali

Department of Computer Science Georgia State University

■ Dynamic Programming Methods

Today's Learning Journey

- Review: Bellman Equations
- Value Iteration Algorithm
- Convergence Theory
- 4 Implementation Details
- Worked Example
- Computational Complexity
- Advantages and Limitations
- Comparison with Policy Iteration
- Extensions and Applications
- Summary

Bellman Equations Recap

State Value Function:

$$v_*(s) = \max_{a} \mathbb{E}[R_{t+1} + \gamma v_*(S_{t+1})|S_t = s, A_t = a]$$

$$= \sum_{\mathsf{a}} \pi(\mathsf{a}|\mathsf{s}) \sum_{\mathsf{s}',\mathsf{r}} p(\mathsf{s}',\mathsf{r}|\mathsf{s},\mathsf{a}) [\mathsf{r} + \gamma \mathsf{v}_\pi(\mathsf{s}')]$$

 $v_{\pi}(s) = \mathbb{E}_{\pi}[G_t|S_t = s]$

 $= \mathbb{E}_{\pi}[R_{t+1} + \gamma G_{t+1} | S_t = s]$

$$=\max_{a}\mathbb{E}[R_{t+1}+\gamma v]$$

$$= \max_{a} \mathbb{E}[R_{t+1} + \gamma v_*(S_t)]$$

$$= \max_{a} \sum_{r} p(s', r|s, a)[r + \gamma v_*(s')]$$

Key Insight

The Bellman optimality equation provides the foundation for value iteration

(1)

(2)

(3)

(4)

(5)

Value Iteration: Core Idea

Principle

Value Iteration turns the Bellman optimality equation into an iterative update rule

Instead of solving: $v_*(s) = \max_a \sum_{s',r} p(s',r|s,a)[r + \gamma v_*(s')]$ We iterate: $v_{k+1}(s) = \max_a \sum_{s',r} p(s',r|s,a)[r + \gamma v_k(s')]$

Key Properties:

- Model-based approach
- Guaranteed convergence
- Finds optimal policy

Requirements:

- Complete MDP model
- Finite state/action spaces
- Discount factor $\gamma < 1$

Value Iteration Algorithm

Algorithm 1 Value Iteration

Require: MDP (S, A, P, R, γ) , threshold $\theta > 0$

- 1: Initialize V(s)=0 for all $s\in S$
- 2: repeat
- 3: $\Delta \leftarrow 0$ 4: **for** each state $s \in S$ **do**
- 4: **for** each state $s \in S$ **do**5: $v \leftarrow V(s)$
 - $v \leftarrow V(s)$
- 6: $V(s) \leftarrow \max_{a} \sum_{s',r} p(s',r|s,a)[r+\gamma V(s')]$ 7: $\Delta \leftarrow \max(\Delta,|v-V(s)|)$
- 8: **end for** 9: **until** $\Delta < \theta$
- 10: **Output:** Optimal policy $\pi_*(s) = \arg\max_a \sum_{s',r} p(s',r|s,a)[r + \gamma V(s')]$

Time Complexity

 $O(|S|^2|A|)$ per iteration, polynomial convergence

Value Iteration: Step-by-Step Breakdown

Step 1: Initialization

- Set $V_0(s) = 0$ for all states s
- Choose convergence threshold θ

Step 2: Value Update (Bellman Backup)

$$V_{k+1}(s) = \max_{a} \sum_{s'} P(s'|s,a)[R(s,a,s') + \gamma V_k(s')]$$

- ullet Compute $\Delta = \max_s |V_{k+1}(s) V_k(s)|$
- Stop if $\Delta < \theta$

Step 4: Policy Extraction

$$\pi_*(s) = rg \max_{a} \sum_{c'} P(s'|s,a)[R(s,a,s') + \gamma V_*(s')]$$

(7)

(6)

Convergence Guarantees

Theorem (Value Iteration Convergence)

For any finite MDP with γ < 1, value iteration converges to the unique optimal value function v_* .

Proof Sketch:

- \bullet The Bellman operator T is a contraction mapping
- **②** For any value functions $u, v: ||Tu Tv||_{\infty} \le \gamma ||u v||_{\infty}$
- \odot By Banach Fixed Point Theorem, T has unique fixed point v_*
- Value iteration: $v_{k+1} = Tv_k$ converges to v_*

Rate of Convergence

$$||v_k - v_*||_{\infty} \le \gamma^k ||v_0 - v_*||_{\infty}$$
 (8)

Geometric convergence with rate γ

Error Bounds and Stopping Criteria

Practical Question: When should we stop the algorithm?

Error Bound

If $||v_{k+1}-v_k||_{\infty}<\theta$, then:

Policy Loss Bound:

- Let π_k be greedy policy w.r.t. v_k
- If $||v_k v_*||_{\infty} < \epsilon$, then:

$$||v_* - v_{\pi_k}||_{\infty} \leq \frac{2\gamma\epsilon}{1-\gamma}$$

 $||v_k - v_*||_{\infty} \leq \frac{\theta}{1 - \gamma}$

Practical Insight

Small value function errors lead to near-optimal policies

(10)

(9)

Synchronous vs Asynchronous Updates

Synchronous Value Iteration:

- Update all states simultaneously
- Use V_k to compute V_{k+1}
- Requires two arrays
- Standard algorithm

Asynchronous Value Iteration:

- Update states one at a time
- Use most recent values
- In-place updates
- Often faster convergence

Pseudocode

```
for s in states:
```

```
V_{new}[s] = max_a Q(s,a)
```

 $V = V_new$

Pseudocode

```
for s in states:
```

```
V[s] = \max_a Q(s,a)
```

// immediately use new V[s]

Note

Both versions converge to v_* , but asynchronous often faster in practice

Value Iteration Variants

1. Gauss-Seidel Value Iteration

- Update states in systematic order
- Use newest available values
- Faster convergence than Jacobi method

2. Prioritized Sweeping

- Update states with largest Bellman error first
- Maintain priority queue of states
- Much faster for sparse problems

3. Real-Time Value Iteration

- Update only visited states
- Useful for large state spaces
- Agent-centric approach

Key Insight

All variants maintain convergence guarantees while improving efficiency

Grid World Example

S1	S2	Т
S3	X	S4
S	S6	S7

Problem Setup:

- \bullet 3 \times 3 grid world
- Start: S5, Goal: T (reward +10)
- Obstacle: X (impassable)
- Actions: Up, Down, Left, Right
- Step reward: -1
- $\gamma = 0.9$

Transition Model:

- 0.8 prob: intended direction
- 0.1 prob: each perpendicular direction
- Hit wall: stay in place

Grid World: Value Iteration Steps

Iteration 0:		
0	0	0
0	Χ	0
0	0	0

Iteration 1:		
-1	-1	9
-1	Х	9
-1	-1	-1

Iteration 2:		
-1.9	6.4	9
-1.9	Χ	6.4
-1.9	-1.9	-1.9

eration 5:			
4.6	6.4	9	
2.3	Х	6.4	
0.4	2.3	4.6	

Value Update Example (S6):

$$V_1(S6) = \max\{Q(S6, \text{up}), Q(S6, \text{down}), Q(S6, \text{left}), Q(S6, \text{right})\}$$

$$= \max\{-1, -1, -1, 6.4\} = 6.4$$
(12)

Where:
$$Q(S6, right) = -1 + 0.9 \times [0.8 \times 9 + 0.1 \times (-1) + 0.1 \times (-1)] = 6.4$$

Grid World: Optimal Policy

Optimal Policy: Leading Policy Extraction:

$$\pi_*(s) = rg \max_{a} \sum_{s} P(s'|s,a)[R + \gamma V(s')]$$

(13)

Complexity Analysis

Time Complexity per Iteration:

- For each state s: $O(|A| \times |S|)$ operations
- Total per iteration: $O(|S| \times |A| \times |S|) = O(|S|^2|A|)$

Number of Iterations:

- Convergence rate: $O(\log(1/\epsilon)/\log(1/\gamma))$
- For $\epsilon=10^{-6}$, $\gamma=0.9$: ≈ 131 iterations

Total Complexity:

$$O\left(\frac{|S|^2|A|}{\log(1/\gamma)}\log\left(\frac{1}{\epsilon}\right)\right) \tag{14}$$

Curse of Dimensionality

For *n* state variables with *k* values each: $|S| = k^n$ (exponential!)

Memory Requirements

Space Complexity:

- Value function: O(|S|)
- Transition model: $O(|S|^2|A|)$
- Policy: O(|S|)

Optimization Techniques:

- In-place updates: Reduce memory by half
- Sparse representations: For structured problems
- Function approximation: For large state spaces
- **State abstraction:** Group similar states

Practical Limits

- Tabular VI: $\sim 10^6$ states (modern computers)
- Beyond this: Need approximation methods

Value Iteration: Strengths

Advantages

- Guaranteed convergence to optimal solution
- Simple to implement and understand
- No policy needed during learning
- Anytime algorithm: can stop early for approximate solution
- Parallelizable: states can be updated independently
- Memory efficient: only needs value function

Mathematical Elegance

- Direct implementation of Bellman optimality equation
- Clear convergence theory and error bounds
- Foundation for many advanced RL algorithms

Value Iteration: Limitations

Major Limitations

- Requires complete MDP model (P, R)
- Curse of dimensionality: $O(|S|^2|A|)$ per iteration
- Only works for finite state/action spaces
- \bullet Slow for large discount factors $\gamma\approx 1$
- No online learning: must know environment model

When VI Struggles:

- Continuous state/action spaces
- Unknown environment dynamics
- Very large state spaces ($> 10^6$ states)
- Real-time applications requiring fast responses

Solutions

Function approximation, sampling methods, model-free approaches

Value Iteration vs Policy Iteration

Aspect	Value Iteration	Policy Iteration
Updates	Value function only	Policy + Value function
Convergence	$O(\log(1/\epsilon))$	Fewer iterations
Per iteration	$O(S ^2 A)$	$O(S ^3 + S ^2 A)$
Memory	O(S)	<i>O</i> (<i>S</i>)
Implementation	Simpler	More complex
Early stopping	Good approx. policy	Poor policy

When to use each:

- Value Iteration: When you want simplicity, anytime behavior
- Policy Iteration: When exact solution needed, small state spaces

Value Iteration Extensions

1. Approximate Value Iteration

- Use function approximation: $V(s) \approx \hat{V}(s; \theta)$
- Neural networks, linear functions, etc.
- Enables large/continuous state spaces

2. Asynchronous Value Iteration

- Update states in any order
- Real-time dynamic programming
- Prioritized sweeping variants

3. Multi-objective Value Iteration

- Vector-valued rewards and values
- Pareto-optimal policies
- Applications in robotics, finance

Real-World Applications

1. Game Playing

- Chess, Go, Backgammon endgames
- Perfect information games
- Tablebase generation

2. Robotics

- Path planning in discrete grids
- Navigation with known maps
- Manipulation planning

3. Operations Research

- Inventory management
- Queueing systems optimization
- Maintenance scheduling

4. Finance

- Portfolio optimization
- Options pricing (American options)
- Risk management

Key Takeaways

Value Iteration Algorithm

- Core idea: Iteratively apply Bellman optimality operator
- ullet Convergence: Guaranteed for finite MDPs with $\gamma < 1$
- **Complexity:** $O(|S|^2|A|)$ per iteration

Theoretical Foundation

- Based on contraction mapping theorem
- ullet Geometric convergence rate γ
- Clear error bounds and stopping criteria

Practical Considerations

- Works well for moderate-sized problems
 - Requires complete environment model
 - Foundation for more advanced RL methods

Next Steps

What's Coming Next:

- Policy Iteration: Alternative DP approach
- Generalized Policy Iteration: Unified framework
- Monte Carlo Methods: Model-free approaches
- Temporal Difference Learning: Online model-free methods

Practice Problems:

- Implement value iteration for small grid worlds
- ullet Analyze convergence for different γ values
- Compare with policy iteration on same problems
- Explore asynchronous update schemes

