
Dynamic Programming
Asynchronous Dynamic Programming

Sarwan Ali

Department of Computer Science
Georgia State University

Ç Advanced Dynamic Programming Techniques Â

1 / 22

Today’s Learning Journey

1 Introduction to Asynchronous DP

2 Core Principles

3 Asynchronous Algorithms

4 Convergence Analysis

5 Practical Examples

6 Advantages and Limitations

7 Implementation Considerations

8 Advanced Topics

9 Summary

2 / 22

Motivation: Limitations of Synchronous DP

Synchronous Dynamic Programming Challenges

Computational Burden: Updates all states in each sweep

Memory Requirements: Requires two value function arrays

Uniform Updates: Equal attention to all states regardless of importance

Sequential Dependency: Must complete full sweep before next iteration

Key Question

Can we be more selective and efficient in our updates?

"
Asynchronous Dynamic Programming

3 / 22

What is Asynchronous Dynamic Programming?

Definition (Asynchronous DP)

Dynamic programming algorithms that update states selectively and in-place, without
requiring systematic sweeps through the entire state space.

Synchronous DP

Updates all states

Fixed order

Two arrays needed

Sweep-based

Asynchronous DP

Selective updates

Flexible order

In-place updates

Continuous process

4 / 22

Fundamental Principles of Asynchronous DP

1 In-Place Updates
Use updated values immediately
No need for separate arrays
V (s)← maxa

∑
s′,r p(s

′, r |s, a)[r + γV (s ′)]

2 Selective State Updates
Focus on important/relevant states
Skip states that don’t need updating
Prioritize based on value changes

3 Convergence Guarantee
All states must be updated infinitely often
No state can be permanently ignored
limk→∞ maxs |Vk(s)− V ∗(s)| = 0

5 / 22

Mathematical Foundation

Bellman Optimality Equation (Reminder)

V ∗(s) = max
a

∑
s′,r

p(s ′, r |s, a)[r + γV ∗(s ′)]

Asynchronous Update Rule

For any state s at any time: Vk+1(s) = maxa
∑

s′,r p(s
′, r |s, a)[r + γVk(s

′)]
Where Vk(s

′) uses the most recent value available.

Theorem (Convergence of Asynchronous DP)

If all states are updated infinitely often, then:

lim
k→∞

Vk(s) = V ∗(s) ∀s ∈ S

6 / 22

Types of Asynchronous DP Algorithms

Asynchronous
DP

Gauss-
Seidel Value
Iteration

Prioritized
Sweeping

Real-
Time DP

Gauss-Seidel: Sequential in-place updates

Prioritized Sweeping: Update states based on priority

Real-Time DP: Update states as they are visited

7 / 22

Gauss-Seidel Value Iteration

Algorithm Concept

Update states sequentially using the most recent values available.

Initialize V (s) = 0 ∀s
repeat

for each state s ∈ S do
V (s)← maxa

∑
s′,r p(s

′, r |s, a)
[r + γV (s ′)]

end for
until convergence

Key Features

Uses updated V (s ′) immediately

Only one value array needed

Often faster convergence

Order of updates matters

8 / 22

Prioritized Sweeping

Core Idea

Update states in order of their priority - how much their value is expected to change.

Definition (Priority)

Priority of state s: Priority(s) =
∣∣∣maxa

∑
s′,r p(s

′, r |s, a)[r + γV (s ′)]− V (s)
∣∣∣

Initialize priority queue Q, V (s) = 0 ∀s
repeat

s ← state with highest priority from Q
Update V (s) using Bellman equation
for each predecessor s̄ of s do

Compute priority of s̄
if priority > threshold then

Add s̄ to Q
end if

end for
until Q is empty or convergence 9 / 22

Real-Time Dynamic Programming

Motivation

Update only states that are actually visited during execution or simulation.

Initialize V (s) = 0 ∀s
s ← start state
repeat

Update V (s) using Bellman equation
Choose action a (e.g., ϵ-greedy)
s ← next state

until termination

Advantages

Focuses on relevant states

Suitable for large state spaces

Can run during execution

Natural for online learning

Trade-off

May not find globally optimal policy if some states are never visited.

10 / 22

Convergence Requirements

Theorem (Asynchronous DP Convergence)

Asynchronous DP converges to V ∗ if and only if:

1 All states are updated infinitely often

2 Updates use the Bellman optimality operator

3 The MDP satisfies standard assumptions (finite states, bounded rewards)

Practical Implications

No state can be permanently ignored

Updates can be in any order

Can skip states temporarily

Convergence rate depends on update strategy

11 / 22

Convergence Rate Analysis

Factors Affecting Convergence Speed

1 Update Order
Some orders converge faster than others
Gauss-Seidel often faster than Jacobi

2 State Prioritization
Prioritized sweeping focuses on important changes
Can achieve faster practical convergence

3 Problem Structure
Connectivity of state space
Distribution of optimal paths

No Universal Best Order

The optimal update order is problem-dependent and often unknown a priori.

12 / 22

Example: Grid World with Asynchronous DP

G

X

S

Synchronous vs Asynchronous

Synchronous:

Update all 16 states

Multiple sweeps needed

Asynchronous:

Focus on path states

Prioritize by value change

Faster convergence

Update Strategy

Start from goal and work backwards, or follow trajectories from start state.

13 / 22

Numerical Example: Prioritized Sweeping

Simple Chain MDP

States: {S1, S2,S3, S4}, Actions: {left, right}
Rewards: R(S4) = +10, all others = 0

S1 S2 S3 S4

Priority Order:

1 S4: Priority = 10

2 S3: Priority = γ × 10

3 S2: Priority = γ2 × 10

4 S1: Priority = γ3 × 10

Update Sequence:

Update S4 first

Then S3 (affected by S4)

Then S2 (affected by S3)

Finally S1 (affected by S2)

14 / 22

Advantages of Asynchronous DP

Computational Benefits

Memory Efficient: In-place updates

Faster Convergence: Often requires
fewer computations

Flexible: Can adapt to problem
structure

Scalable: Better for large state spaces

Practical Benefits

Online Learning: Can update during
execution

Anytime Algorithm: Can stop and
resume

Prioritization: Focus on important
states

Real-time: Suitable for
time-constrained environments

Key Advantage: Efficiency without sacrificing optimality

15 / 22

Limitations and Challenges

Theoretical Challenges

Convergence Guarantee: Must update all states infinitely often

Order Dependency: Convergence rate depends on update order

No Universal Strategy: Best approach is problem-dependent

Practical Challenges

Implementation Complexity: More complex than synchronous versions

Debugging Difficulty: Harder to track and debug

Priority Computation: Additional overhead for prioritization

Memory Access Patterns: May not be cache-friendly

When to Avoid

Small, simple problems where synchronous DP is sufficient

When deterministic, predictable behavior is required
16 / 22

Implementation Best Practices

Data Structures
Priority Queue: For prioritized sweeping (heap-based)

State Tracking: Keep track of when states were last updated

Predecessor Lists: For efficient backward propagation

Algorithmic Considerations
Threshold Values: When to add states to priority queue

Termination Criteria: When to stop updating

Update Scheduling: How to ensure all states are updated

Numerical Stability: Handle floating-point precision issues

Performance Optimization
Sparse Representations: For large, sparse state spaces

Parallel Updates: When states are independent

Incremental Computation: Reuse computations when possible

17 / 22

Pseudocode: Prioritized Sweeping Implementation

Complete Algorithm

function PrioritizedSweeping(MDP, threshold):

Initialize V(s) = 0 for all s

Initialize priority queue PQ

// Initial population of queue

for each state s:

priority = |BellmanUpdate(s) - V(s)|

if priority > threshold:

PQ.insert(s, priority)

while PQ is not empty:

s = PQ.extractMax()

V(s) = BellmanUpdate(s)

for each predecessor p of s:

priority = |BellmanUpdate(p) - V(p)|

if priority > threshold:

PQ.insert(p, priority)

return V
18 / 22

Advanced Asynchronous DP Variants

Bounded Real-Time DP

Limits computation time per decision

Updates multiple states per action selection

Balances planning time with action quality

Focused Dynamic Programming

Uses reachability analysis

Only considers states reachable from start state

Efficient for problems with many irrelevant states

Parallel Asynchronous DP

Multiple processors update different states

Requires careful synchronization

Can achieve significant speedup
19 / 22

Connection to Modern RL

Relationship to Temporal Difference Learning

TD learning can be viewed as asynchronous DP with sampling

Both use immediate updates of value estimates

Asynchronous DP uses full model, TD uses sample transitions

Dyna Architecture

Combines learning and planning

Uses prioritized sweeping for background planning

Updates model and values asynchronously

Modern Deep RL

Experience replay can be seen as prioritized update mechanism

Prioritized experience replay directly inspired by prioritized sweeping

Asynchronous methods in deep RL (A3C, etc.)
20 / 22

Key Takeaways

Core Concepts

Flexibility: Asynchronous DP provides flexible, efficient alternatives to synchronous
methods

Convergence: Guaranteed convergence with proper update requirements

Efficiency: Often faster convergence with less memory usage

Practical Impact

Scalability: Enables DP for larger problems

Real-time Applications: Suitable for online and real-time scenarios

Foundation: Basis for modern RL algorithms

Asynchronous DP: Efficiency meets Optimality

21 / 22

Next Steps

What’s Coming Next

Monte Carlo Methods: Model-free approaches

Temporal Difference Learning: Combining ideas from DP and MC

Policy Gradient Methods: Direct policy optimization

Study Recommendations

Implement prioritized sweeping on a grid world

Compare convergence rates of different asynchronous methods

Explore the connection to modern deep RL methods

® Questions? ®

22 / 22

	Introduction to Asynchronous DP
	Core Principles
	Asynchronous Algorithms
	Convergence Analysis
	Practical Examples
	Advantages and Limitations
	Implementation Considerations
	Advanced Topics
	Summary

