Dynamic Programming

Asynchronous Dynamic Programming

Sarwan Ali

Department of Computer Science
Georgia State University

o Advanced Dynamic Programming Techniques @

1/22

Today's Learning Journey

@ Introduction to Asynchronous DP
© Core Principles

9 Asynchronous Algorithms

@ Convergence Analysis

© Practical Examples

© Advantages and Limitations

@ mplementation Considerations

© Advanced Topics
© Summary

2/22

Motivation: Limitations of Synchronous DP

Synchronous Dynamic Programming Challenges
o Computational Burden: Updates all states in each sweep
o Memory Requirements: Requires two value function arrays
o Uniform Updates: Equal attention to all states regardless of importance
o

Sequential Dependency: Must complete full sweep before next iteration

Key Question

Can we be more selective and efficient in our updates?

\ 2

Asynchronous Dynamic Programming

3/22

What is Asynchronous Dynamic Programming?

Definition (Asynchronous DP)

Dynamic programming algorithms that update states selectively and in-place, without
requiring systematic sweeps through the entire state space.

Synchronous DP

Asynchronous DP

o Updates all states @ Selective updates
o Fixed order o Flexible order

@ Two arrays needed @ In-place updates

@ Sweep-based e Continuous process

4/22

Fundamental Principles of Asynchronous DP

Q@ In-Place Updates

o Use updated values immediately
o No need for separate arrays
o V(s) <= maxad_, p(s'srls,a)[r +yV(s')]

@ Selective State Updates

o Focus on important/relevant states
o Skip states that don’t need updating
e Prioritize based on value changes

© Convergence Guarantee

o All states must be updated infinitely often
o No state can be permanently ignored
o limy_,o0o maxs |Vi(s) — V*(s)| =0

5/22

Mathematical Foundation

Bellman Optimality Equation (Reminder)

V*(s) = m‘_?xz p(s’,rls,a)[r +vV*(s)]

s',r

Asynchronous Update Rule

For any state s at any time: Vi1(s) = maxa >y, p(s', rls, a)[r + v Vi(s')]
Where V/(s’) uses the most recent value available.

Theorem (Convergence of Asynchronous DP)
If all states are updated infinitely often, then:

lim Vi(s) = V*(s) VseS
k—o0

6/22

Types of Asynchronous DP Algorithms

Asynchronous
DP
_Gauss- Prioritized Real-
Seidel Value . .
. Sweeping Time DP
Iteration

o Gauss-Seidel: Sequential in-place updates
o Prioritized Sweeping: Update states based on priority

o Real-Time DP: Update states as they are visited

7/22

Gauss-Seidel Value Iteration

Algorithm Concept
Update states sequentially using the most recent values available.

Initialize V(s) =0 Vs

Key Features

repeat
for each state s € S do o Uses updated V(s') immediately
V(s) <= maxy > o, p(s',rls, a) @ Only one value array needed
[r +~V(s)] o Often faster convergence
end for

@ Order of updates matters

until convergence

8/22

Prioritized Sweeping

Core Idea

Update states in order of their priority - how much their value is expected to change.

Definition (Priority)

Priority of state s: Priority(s) = ‘maxa Yoo P(s'srls, a)[r +yV(s')] — V(s)’

Initialize priority queue Q, V(s) =0 Vs
repeat
s « state with highest priority from Q
Update V/(s) using Bellman equation
for each predecessor 5 of s do
Compute priority of §
if priority > threshold then
Add 5to Q
end if
end for

until @ is empty or convergence 9/22

Real-Time Dynamic Programming
Update only states that are actually visited during execution or simulation. I

Initialize V(s) =0 Vs
s < start state

Advantages

@ Focuses on relevant states

repeat
Update V(s) using Bellman equation @ Suitable for large state spaces
Choose action a (e.g., e-greedy) @ Can run during execution
_5<— ”?Xt s.tate o Natural for online learning
until termination

Trade-off

May not find globally optimal policy if some states are never visited.

10/22

Convergence Requirements

Theorem (Asynchronous DP Convergence)

Asynchronous DP converges to V* if and only if:
Q All states are updated infinitely often
@ Updates use the Bellman optimality operator
© The MDP satisfies standard assumptions (finite states, bounded rewards)

Practical Implications

o No state can be permanently ignored
o Updates can be in any order
o Can skip states temporarily

@ Convergence rate depends on update strategy

11/22

Convergence Rate Analysis

Factors Affecting Convergence Speed

© Update Order

o Some orders converge faster than others
o Gauss-Seidel often faster than Jacobi

@ State Prioritization

o Prioritized sweeping focuses on important changes
o Can achieve faster practical convergence

© Problem Structure

o Connectivity of state space
o Distribution of optimal paths

No Universal Best Order
The optimal update order is problem-dependent and often unknown a priori.

12/22

Example: Grid World with Asynchronous DP

Synchronous vs Asynchronous

Synchronous:

G o Update all 16 states

1 @ Multiple sweeps needed

X 1 Asynchronous:

S—— | o Focus on path states

@ Prioritize by value change

o Faster convergence

v

Update Strategy
Start from goal and work backwards, or follow trajectories from start state.

13/22

Numerical Example: Prioritized Sweeping

Simple Chain MDP

States: {51, 52, 53,54}, Actions: {left, right}
Rewards: R(S4) = +10, all others =0

Priority Order: Update Sequence:
Q S;: Priority = 10 o Update 54 first
@ S3: Priority = v x 10 @ Then S; (affected by S4)
@ S;: Priority = 42 x 10 @ Then S, (affected by S3)
@ Sp: Priority = 43 x 10 o Finally S; (affected by S5)

14 /22

Advantages of Asynchronous DP

Practical Benefits

Computational Benefits o Online Learning: Can update during

o Memory Efficient: In-place updates execution

o Faster Convergence: Often requires o Anytime Algorithm: Can stop and
fewer computations resume

o Flexible: Can adapt to problem @ Prioritization: Focus on important
structure states

o Scalable: Better for large state spaces) o Real-time: Suitable for

time-constrained environments

Key Advantage: Efficiency without sacrificing optimality

15 /22

Limitations and Challenges

Theoretical Challenges

o Convergence Guarantee: Must update all states infinitely often

@ Order Dependency: Convergence rate depends on update order

@ No Universal Strategy: Best approach is problem-dependent

Practical Challenges

o Implementation Complexity: More complex than synchronous versions

o Debugging Difficulty: Harder to track and debug
@ Priority Computation: Additional overhead for prioritization
°

Memory Access Patterns: May not be cache-friendly

When to Avoid

@ Small, simple problems where synchronous DP is sufficient

@ When deterministic, predictable behavior is required 16/22

Implementation Best Practices

Data Structures

@ Priority Queue: For prioritized sweeping (heap-based)
@ State Tracking: Keep track of when states were last updated

@ Predecessor Lists: For efficient backward propagation

Algorithmic Considerations

@ Threshold Values: When to add states to priority queue
Termination Criteria: When to stop updating

Update Scheduling: How to ensure all states are updated

Numerical Stability: Handle floating-point precision issues

Performance Optimization

@ Sparse Representations: For large, sparse state spaces
@ Parallel Updates: When states are independent

@ Incremental Computation: Reuse computations when possible

17/22

Pseudocode: Prioritized Sweeping Implementation

Complete Algorithm

function PrioritizedSweeping(MDP, threshold):
Initialize V(s) = 0 for all s
Initialize priority queue PQ
// Initial population of queue
for each state s:
priority = |BellmanUpdate(s) - V(s) |
if priority > threshold:
PQ.insert(s, priority)
while PQ is not empty:
s = PQ.extractMax()
V(s) = BellmanUpdate(s)
for each predecessor p of s:
priority = |BellmanUpdate(p) - V(p) |
if priority > threshold:
PQ.insert(p, priority)

return V

18/22

Advanced Asynchronous DP Variants

Bounded Real-Time DP

@ Limits computation time per decision
o Updates multiple states per action selection

@ Balances planning time with action quality

v

Focused Dynamic Programming

@ Uses reachability analysis

@ Only considers states reachable from start state

o Efficient for problems with many irrelevant states

v

Parallel Asynchronous DP
@ Multiple processors update different states

@ Requires careful synchronization

z

@ Can achieve significant speedup 10/

Connection to Modern RL

Relationship to Temporal Difference Learning

@ TD learning can be viewed as asynchronous DP with sampling
o Both use immediate updates of value estimates

@ Asynchronous DP uses full model, TD uses sample transitions

Dyna Architecture

@ Combines learning and planning

@ Uses prioritized sweeping for background planning

o Updates model and values asynchronously

v

Modern Deep RL

o Experience replay can be seen as prioritized update mechanism

@ Prioritized experience replay directly inspired by prioritized sweeping
@ Asynchronous methods in deep RL (A3C, etc.)

7

20/22

Key Takeaways

Core Concepts
o Flexibility: Asynchronous DP provides flexible, efficient alternatives to synchronous
methods
o Convergence: Guaranteed convergence with proper update requirements

o Efficiency: Often faster convergence with less memory usage

Practical Impact
o Scalability: Enables DP for larger problems
o Real-time Applications: Suitable for online and real-time scenarios

o Foundation: Basis for modern RL algorithms

21/22

What's Coming Next
@ Monte Carlo Methods: Model-free approaches

o Temporal Difference Learning: Combining ideas from DP and MC
o Policy Gradient Methods: Direct policy optimization

Study Recommendations

@ Implement prioritized sweeping on a grid world
@ Compare convergence rates of different asynchronous methods

@ Explore the connection to modern deep RL methods

© Questions? @

22/22

	Introduction to Asynchronous DP
	Core Principles
	Asynchronous Algorithms
	Convergence Analysis
	Practical Examples
	Advantages and Limitations
	Implementation Considerations
	Advanced Topics
	Summary

