
Introduction to Reinforcement Learning
Dynamic Programming - Generalized Policy Iteration

Sarwan Ali

Department of Computer Science
Georgia State University

L Generalized Policy Iteration ¢

1 / 27

Today’s Learning Journey

1 Introduction to Generalized Policy Iteration

2 Mathematical Foundation

3 Policy Evaluation in GPI

4 Policy Improvement in GPI

5 Complete GPI Algorithms

6 Convergence Theory

7 Variations and Extensions

8 Practical Considerations

9 Examples and Applications

10 Connection to Other RL Methods

11 Looking Ahead

2 / 27

What is Generalized Policy Iteration?

Definition

Generalized Policy Iteration (GPI) is the general framework that combines policy evaluation
and policy improvement processes to find optimal policies in Markov Decision Processes.

Key Components:

Policy Evaluation

Policy Improvement

Iterative Process

Convergence Guarantees

PE PI

Policy Iteration

3 / 27

Motivation: Why GPI?

The Challenge

How do we systematically find the optimal policy π∗ and optimal value function v∗ in an
MDP?

Traditional Approaches:

Exhaustive search: Exponential in state/action space

Random exploration: No convergence guarantees

Dynamic Programming: Principled, guaranteed convergence

GPI Solution

GPI provides a systematic framework that alternates between:

1 Making the value function consistent with current policy

2 Making the policy greedy with respect to current value function

4 / 27

Mathematical Prerequisites

Bellman Equations Recap:

vπ(s) =
∑
a

π(a|s)
∑
s′,r

p(s ′, r |s, a)[r + γvπ(s
′)] (1)

v∗(s) = max
a

∑
s′,r

p(s ′, r |s, a)[r + γv∗(s ′)] (2)

qπ(s, a) =
∑
s′,r

p(s ′, r |s, a)[r + γvπ(s
′)] (3)

q∗(s, a) =
∑
s′,r

p(s ′, r |s, a)[r + γmax
a′

q∗(s ′, a′)] (4)

Policy Improvement Theorem: If qπ(s, π′(s)) ≥ vπ(s) for all s ∈ S, then π′ ≥ π (i.e.,
vπ′ ≥ vπ).

5 / 27

The GPI Framework

Policy
Evaluation
v ≈ vπ

Policy
Improvement
π ← greedy(v)

vπ

π′

Evaluation Improvement

Convergence: v → v∗ and π → π∗

Key Insight: These two processes stabilize each other and converge to optimality.

6 / 27

Policy Evaluation: Making Values Consistent

Goal: Given policy π, compute vπ (or approximate it)

Iterative Policy Evaluation

vk+1(s) =
∑
a

π(a|s)
∑
s′,r

p(s ′, r |s, a)[r + γvk(s
′)] (5)

= Eπ[Rt+1 + γvk(St+1)|St = s] (6)

Implementation Options:

Synchronous: Update all states simultaneously

Asynchronous: Update states in any order

In-place: Use updated values immediately

Stopping Criterion: maxs |vk+1(s)− vk(s)| < θ

7 / 27

Policy Evaluation Algorithm

Iterative Policy Evaluation Algorithm

def policy_evaluation(pi , mdp , theta=1e-6, gamma =1.0):

V = initialize_value_function(mdp.states)

while True:

delta = 0

for s in mdp.states:

v = V[s]

V[s] = sum(pi[s][a] * sum(p * (r + gamma * V[s_next])

for s_next , r, p in mdp.transitions(s, a))

for a in mdp.actions(s))

delta = max(delta , abs(v - V[s]))

if delta < theta:

break

return V

Complexity: O(|S|2 · |A|) per iteration
8 / 27

Policy Improvement: Acting Greedily

Goal: Given value function v , find better policy π′

Greedy Policy Improvement

π′(s) = argmax
a

qπ(s, a) (7)

= argmax
a

∑
s′,r

p(s ′, r |s, a)[r + γv(s ′)] (8)

Policy Improvement Theorem:

Theorem

Let π and π′ be deterministic policies such that for all s ∈ S: qπ(s, π′(s)) ≥ vπ(s) Then
π′ ≥ π, i.e., vπ′(s) ≥ vπ(s) for all s ∈ S.

Proof Intuition: Acting greedily w.r.t. vπ gives at least as good expected return.

9 / 27

Policy Improvement: Stochastic Case

For Stochastic Policies:
If we have a stochastic policy π, we can improve it by:

π′(a|s) =

{
1 if a = argmaxa qπ(s, a)

0 otherwise
(9)

Soft Policy Improvement: For exploration, we might use:

π′(a|s) = exp(qπ(s, a)/τ)∑
a′ exp(qπ(s, a

′)/τ)
(10)

where τ is the temperature parameter.

Key Point

Policy improvement is guaranteed to find a better policy unless the current policy is already
optimal.

10 / 27

Policy Iteration Algorithm

Policy Iteration

Initialize: π0 arbitrarily, V0 = 0
For k = 0, 1, 2, . . . until convergence:

1 Policy Evaluation: Solve vπk
= vπk

2 Policy Improvement: πk+1(s) = argmaxa
∑

s′,r p(s
′, r |s, a)[r + γvπk

(s ′)]

3 Check: If πk+1 = πk , then stop

Properties:

Guaranteed convergence to π∗ and v∗

Computationally expensive - exact policy evaluation

Finite convergence - at most |A||S| iterations

11 / 27

Value Iteration Algorithm

Value Iteration

Initialize: V0 arbitrarily (e.g., V0 = 0)
For k = 0, 1, 2, . . . until convergence:

1 Value Update:

Vk+1(s) = max
a

∑
s′,r

p(s ′, r |s, a)[r + γVk(s
′)]

2 Check: If maxs |Vk+1(s)− Vk(s)| < θ, then stop

Extract Policy: π(s) = argmaxa
∑

s′,r p(s
′, r |s, a)[r + γV (s ′)]

Properties:

More efficient - combines evaluation and improvement

Guaranteed convergence to v∗

Geometric convergence rate

12 / 27

Policy vs Value Iteration Comparison

Aspect Policy Iteration Value Iteration
Convergence Finite steps Asymptotic
Per iteration cost High (solve system) Low (one sweep)
Total iterations Few Many
Memory Two arrays One array
Practical efficiency Better for small |S| Better for large |S|

When to use which?

Policy Iteration: When policy evaluation can be done efficiently

Value Iteration: When state space is large or continuous

Modified Policy Iteration: Compromise between the two

13 / 27

Convergence of GPI

Theorem (GPI Convergence)

Under GPI, both the sequence of value functions {vk} and policies {πk} converge to the
optimal value function v∗ and an optimal policy π∗.

Key Insights:

Monotonicity: vπ0 ≤ vπ1 ≤ vπ2 ≤ . . . ≤ v∗

Finite Policy Space: Only finitely many deterministic policies

Improvement until Optimal: If π′ ̸= π after improvement, then vπ′ > vπ

Proof Sketch
1 Policy improvement gives strictly better policy unless optimal

2 Finite policy space ⇒ must reach optimal policy

3 Once optimal policy found, policy evaluation converges to v∗

14 / 27

Rate of Convergence

Value Iteration Convergence Rate:

Theorem

For value iteration with discount factor γ < 1:

∥Vk − V ∗∥∞ ≤ γk∥V0 − V ∗∥∞

Practical Implications:

Geometric convergence with rate γ
Smaller γ ⇒ faster convergence
After k iterations, error bounded by γk times initial error

Stopping Criterion

To guarantee ∥Vk − V ∗∥∞ ≤ ϵ:

∥Vk+1 − Vk∥∞ ≤
ϵ(1− γ)

2γ
15 / 27

Modified Policy Iteration

Motivation: Balance between policy and value iteration

Algorithm

Initialize: π0, V0

Repeat:

1 Partial Policy Evaluation: Run m steps of policy evaluation

Vk+1(s) =
∑
a

π(a|s)
∑
s′,r

p(s ′, r |s, a)[r + γVk(s
′)]

2 Policy Improvement: π′ = greedy(V)

Special Cases:

m =∞: Standard Policy Iteration
m = 1: Value Iteration
m ∈ [2,∞): Modified Policy Iteration

Advantage: Tunable trade-off between computation per iteration and number of iterations.16 / 27

Asynchronous Dynamic Programming

Key Idea: Update states in any order, potentially multiple times

Asynchronous Value Iteration

At each step, pick some state s and update:

V (s)← max
a

∑
s′,r

p(s ′, r |s, a)[r + γV (s ′)]

Advantages:

Flexibility in update order

Can focus on important states

Online implementation possible

Parallelization opportunities

Convergence Requirement: Every state must be updated infinitely often in the limit.
Applications: Real-time dynamic programming, prioritized sweeping

17 / 27

Implementation Challenges

State Space Issues:

Curse of dimensionality: |S| grows exponentially
Memory requirements: Store V (s) for all states

Computation time: O(|S|2|A|) per iteration
Solutions and Approximations:

Function approximation: V (s) ≈ V̂ (s; θ)

State aggregation: Group similar states

Sampling methods: Monte Carlo approaches

Approximate DP: Fitted value iteration

Model Requirements:

Need complete model: p(s ′, r |s, a)
Model-free alternatives: Temporal difference learning

18 / 27

Practical Implementation Tips

Numerical Considerations:

Use appropriate data types

V = np.zeros(n_states , dtype=np.float64)

Vectorized operations when possible

V_new = np.max(R + gamma * P @ V, axis =1)

Careful with stopping criteria

delta = np.max(np.abs(V_new - V))

if delta < theta * (1 - gamma) / (2 * gamma):

break

Debugging Tips:

Verify Bellman equations hold at convergence

Check policy improvement actually improves value

Monitor convergence curves

Test on small, known problems first
19 / 27

Example: Grid World

(0, 0)

(0, 1)

(0, 2)

(1, 0)

(1, 1)

(1, 2)

(2, 0)

(2, 1)

(2, 2)

(3, 0)

(3, 1)

(3, 2)+1

-1

Setup:

4×3 grid, agent starts at (0,0)

Actions: Up, Down, Left, Right

Rewards: +1 at (3,2), -1 at (3,1), -0.04 otherwise

Walls at (1,1)
20 / 27

Grid World: Value Iteration Results

Value Function after Convergence:

0.81 0.87 0.92 1.0
0.76 0.66 -1.0
0.70 0.66 0.61 0.39

Optimal Policy:

Observations:

Values decrease with distance from goal

Policy avoids the -1 terminal state

Small negative rewards encourage shorter paths

21 / 27

Applications of GPI

Classical Applications:

Inventory Management: Optimal ordering policies

Resource Allocation: CPU scheduling, bandwidth allocation

Financial Planning: Portfolio optimization, option pricing

Manufacturing: Production planning, quality control

Modern AI Applications:

Game Playing: Chess, Go, video games

Robotics: Path planning, manipulation

Autonomous Vehicles: Decision making, route planning

Recommendation Systems: Sequential recommendations

Limitations:

Requires complete model of environment

Computational complexity for large state spaces

Discrete state and action spaces
22 / 27

GPI as Foundation for RL

Generalized Policy Iteration

Dynamic Programming Temporal Difference

Monte Carlo Function Approximation

Q-Learning, SARSA

Monte Carlo Control DQN, Actor-Critic

Key Insight: Almost all RL algorithms can be viewed as implementations of GPI under
different assumptions:

Model-free: Estimate values from experience
Online: Learn while interacting with environment
Approximate: Handle large/continuous state spaces

23 / 27

Summary: Key Takeaways

What We Learned

GPI Framework: Systematic approach to finding optimal policies

Two Key Processes: Policy evaluation + Policy improvement

Convergence Guarantees: Mathematically proven optimality

Two Algorithms: Policy iteration vs Value iteration

Practical Challenges: Computational complexity, model requirements

Practical Impact:

Foundation for modern reinforcement learning
Provides theoretical guarantees for convergence
Template for model-free and approximate methods

Remember

GPI is not just an algorithm—it’s a general principle that underlies most of reinforcement
learning!

24 / 27

Next Steps in RL

Limitations of Dynamic Programming:

Model-based: Requires complete knowledge of MDP

Computational: Curse of dimensionality

Discrete: Limited to finite state/action spaces

Coming Up:

Monte Carlo Methods: Model-free learning from episodes

Temporal Difference Learning: Online, incremental learning

Function Approximation: Handling large state spaces

Policy Gradient Methods: Direct policy optimization

The Journey Continues

Each new method will build upon the GPI framework while addressing specific limitations of
dynamic programming.

25 / 27

Questions & Discussion

®

Questions?
Let’s discuss the concepts, applications,

or any clarifications needed!
� Think about:

How would you apply GPI to a real-world problem?

What challenges might arise in practice?

How does this connect to machine learning you’ve seen before?

26 / 27

Thank You!

sali85@student.gsu.edu

L Keep iterating towards optimality! ¢

27 / 27

	Introduction to Generalized Policy Iteration
	Mathematical Foundation
	Policy Evaluation in GPI
	Policy Improvement in GPI
	Complete GPI Algorithms
	Convergence Theory
	Variations and Extensions
	Practical Considerations
	Examples and Applications
	Connection to Other RL Methods
	Looking Ahead

