Introduction to Reinforcement Learning Foundations - What is RL? Agent-Environment Interaction

Sarwan Ali

Department of Computer Science Georgia State University

in Understanding Reinforcement Learning in the second seco

- 1 What is Reinforcement Learning?
- 2 Agent-Environment Interaction
- 3 Key Concepts and Examples
- 4 Rewards and Goals

Definition

Reinforcement Learning (RL) is a type of machine learning where an agent learns to make decisions by interacting with an environment to maximize cumulative reward.

Key Characteristics:

- Learning through trial and error
- No explicit supervision
- Delayed rewards
- Sequential decision making
- Goal: maximize long-term reward

The RL Framework: Agent-Environment Interaction

The RL Loop

At each time step t: Agent observes state s_t , takes action a_t , receives reward r_{t+1} and new state s_{t+1}

Components of RL System

Agent Components

- **Policy** π : Action selection strategy
- Value Function V: Expected future rewards
- **Model** (optional): Environment representation

Environment Components

- State Space \mathcal{S} : All possible states
- Action Space A: All possible actions
- **Reward Function** *R*: Feedback mechanism
- Transition Function P: State dynamics

Markov Decision Process (MDP)

An RL problem is formalized as an MDP: $\langle \mathcal{S}, \mathcal{A}, P, R, \gamma \rangle$

Components:

- ${\mathcal S}$: State space
- $\mathcal A$: Action space
- P : Transition probability
- R : Reward function
- γ : Discount factor

Key Equations:

(1)(2)

(3)

(4)

$$P(s'|s, a) = \Pr[S_{t+1} = s'|S_t = s, A_t = a]$$
 (6)

$$R(s,a) = \mathbb{E}[R_{t+1}|S_t = s, A_t = a]$$
(7)

$$G_t = \sum_{k=0}^{\infty} \gamma^k R_{t+k+1} \tag{8}$$

(5) where G_t is the return (cumulative discounted reward)

The Learning Process: Exploration vs Exploitation

Exploration

- Try new actions to discover better strategies
- Risk short-term loss for long-term gain
- Essential for learning

(a)

Exploitation	Restaurant Example
 Use current knowledge to maximize reward Play it safe with known good actions Optimize current performance 	Exploitation: Always go to your favorite restaurant Exploration: Try new restaurants to find potentially better ones

Cart-Pole Balance pole by moving cart left/right

Force

Game Playing Learn optimal strategies through self-play

Common Characteristics

Sequential decision making, delayed rewards, learning from interaction, goal-oriented behavior

 $\begin{array}{l} \textbf{Deterministic} \\ \text{Same action} \rightarrow \\ \text{Same outcome} \end{array}$

$\begin{array}{c} \textbf{Stochastic} \\ \text{Same action} \rightarrow \end{array}$

Random outcomes

Fully Observable Agent sees complete state Partially Observable Agent has limited information

Episodic Clear start and end points

Continuing No natural ending

Reward Hypothesis

All goals and purposes can be well thought of as the maximization of the expected value of the cumulative sum of a received scalar signal (reward).

Reward Design Principles:

- Clear objective signal
- 🗸 Immediate when possible
- ✓ Scaled appropriately
- 🗙 Avoid reward hacking
- 🗙 Don't over-engineer

Examples:

- Chess: +1 win, -1 loss, 0 draw
- Robot navigation: -1 per step, +100 at goal

- Stock trading: Portfolio value change
- Game playing: Score difference

Policy π

Defines agent's behavior $\pi(a|s) = \Pr[A_t = a|S_t = s]$

Types:

- Deterministic: $a = \pi(s)$
- Stochastic: $\pi(a|s)$

Value Functions

Estimate expected future rewards

State Value: $V^{\pi}(s) = \mathbb{E}[G_t|S_t = s]$ Action Value: $Q^{\pi}(s, a) = \mathbb{E}[G_t|S_t = s, A_t = a]$

Relationship

$$V^{\pi}(s) = \sum_{a} \pi(a|s) Q^{\pi}(s,a)$$

Summary: RL Foundations

Key Takeaways

- RL is learning through interaction no explicit teacher, just rewards
- Agent-environment loop is the core framework
- MDP formalization provides mathematical foundation
- Exploration vs exploitation is the fundamental tradeoff
- Reward design is crucial for success

Next Topics

Comparison with supervised and unsupervised learning

Think about: What RL problems do you encounter in daily life?