Reinforcement Learning Foundations Comparison with Supervised and Unsupervised Learning

#### Sarwan Ali

Department of Computer Science Georgia State University



# Today's Learning Journey

- 1 The Three Pillars of Machine Learning
- 2 Supervised Learning
- Onsupervised Learning
- 4 Reinforcement Learning
- 5 Detailed Comparison
- Onique Challenges
- 7 Hybrid Approaches
- 8 Performance Metrics
- 9 Real-World Examples
- 10 Advantages and Limitations
- Mathematical Foundations
- Summary and Key Takeaways



Learn from Examples

**Find Patterns** 

Learn from Actions

<□ > < □ > < □ > < ⊇ > < ⊇ > < ⊇ > < ⊇ > < ⊇ > < ⊇ < 3/22

# Supervised Learning: Learning with a Teacher

#### Key Characteristics:

- $\bullet$  V Labeled training data
- $\checkmark$  Input-output pairs (x, y)
- $\checkmark$  Goal: Learn mapping  $f: X \to Y$
- 🗸 Performance measured on test data

### Mathematical Formulation:

Given: 
$$\{(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)\}$$
  
Find:  $f$  such that  $f(x_i) \approx y_i$ 



・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

#### Classification

# Image Recognition Email Spam Detection Medical Diagnosis Sentiment Analysis

**Discrete Outputs** 

#### Both use labeled data

#### Regression

 House Price Prediction
 ✓ Stock Market Forecasting
 ♦ Temperature Prediction
 ♥ Fuel Efficiency
 Continuous Outputs

# Unsupervised Learning: Finding Hidden Patterns

### Key Characteristics:

- 🗙 No labeled data
- 🗸 Only input data x
- 🗸 Goal: Discover hidden structure
- 🗸 Exploratory data analysis

### Mathematical Formulation:

Given:  $\{x_1, x_2, \dots, x_n\}$ Find: Hidden structure in *X* 



・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

# Unsupervised Learning Techniques



### **Density Estimation**

Gaussian Mixture
 Cernel Density
 Histograms
 Model distribution

#### Anomaly Det.

▲ Outlier Detection ▲ Fraud Detection ★ System Monitoring

Find unusual patterns

# Reinforcement Learning: Learning Through Interaction

## Key Characteristics:

- 💼 Agent interacts with environment
- # Learns from rewards/penalties
- 🖋 Sequential decision making
- 🐴 Exploration vs exploitation

### Mathematical Formulation:

Agent takes action  $a_t$  in state  $s_t$ 

Receives reward  $r_{t+1}$  and new state  $s_{t+1}$ 

Goal: Maximize 
$$\sum_{t=0}^{\infty} \gamma^t r_t$$





| Aspect        | Supervised             | Unsupervised        | Reinforcement        |
|---------------|------------------------|---------------------|----------------------|
| Data Type     | Labeled pairs $(x, y)$ | Unlabeled data x    | Sequential experi-   |
|               |                        |                     | ences                |
| Learning Goal | Predict outputs        | Find patterns       | Maximize rewards     |
| Feedback      | Immediate labels       | No direct feedback  | Delayed rewards      |
| Evaluation    | Test accuracy          | Domain knowledge    | Cumulative reward    |
| Time Aspect   | Independent samples    | Independent samples | Sequential decisions |
| Exploration   | Not applicable         | Pattern discovery   | Action exploration   |



# Learning Process Comparison



# Supervised Learning

- 🛕 Overfitting
- 🛢 Data quality
- 🗣 Labeling costs
- 🐴 Class imbalance
- 😮 Generalization

### **Unsupervised Learning**

- ? No ground truth
- • Interpretation difficulty
- 🏴 Evaluation metrics
- 🔀 Parameter tuning
- 🎝 Algorithm selection

#### **Reinforcement Learning**

- <u></u>
  - Exploration-exploitation
- Credit assignment
- 🗢 Sample efficiency
- 🔀 Non-stationarity
- • Reward design

## When to Use Each Approach



# Combining Learning Paradigms



#### **Supervised Learning**

 Accuracy
 Precision & Recall
 ROC-AUC
 F1-Score
 MSE/MAE (Regression)
 Cross-validation

### Unsupervised Learning

- Silhouette Score
- ✗ Within-cluster SS
- C Between-cluster SS
  - 🔀 Rand Index
- i Mutual Information
- Visual Inspection

#### Reinforcement Learning

Cumulative Reward
 Episode Length
 Learning Curve
 Policy Performance
 Sample Efficiency
 Convergence Time

# Concrete Examples Comparison

| Email Classification                                                                                                                | <b>Customer Segmentation</b>                                                                                                                | Game Playing (Chess)                                                                                                    |
|-------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|
| Supervised Learning                                                                                                                 | Unsupervised Learning                                                                                                                       | Reinforcement Learning                                                                                                  |
| <ul> <li>Input: Email content</li> <li>Labels: Spam/Not Spam</li> <li>Goal: Predict new emails</li> <li>Metric: Accuracy</li> </ul> | <ul> <li>Input: Customer data</li> <li>No labels available</li> <li>Goal: Find customer groups</li> <li>Metric: Silhouette score</li> </ul> | Input: Board state<br>C Actions: Possible moves<br>Y Goal: Win the game<br>₩ Metric: Win rate                           |
|                                                                                                                                     |                                                                                                                                             |                                                                                                                         |
|                                                                                                                                     |                                                                                                                                             |                                                                                                                         |
| Medical Diagnosis                                                                                                                   | Document Clustering                                                                                                                         | Autonomous Driving                                                                                                      |
| Medical Diagnosis<br>Supervised Learning                                                                                            | Document Clustering<br>Unsupervised Learning                                                                                                | Autonomous Driving<br>Reinforcement Learning                                                                            |
| Medical Diagnosis<br>Supervised Learning                                                                                            | Document Clustering<br>Unsupervised Learning<br>Imput: Text documents<br>No topic labels                                                    | Autonomous Driving<br>Reinforcement Learning<br>Input: Sensor data<br>Actions: Steering/Speed                           |
| Medical Diagnosis<br>Supervised Learning<br>Input: Patient symptoms<br>Labels: Disease/Healthy<br>Goal: Diagnose patients           | Document Clustering<br>Unsupervised Learning<br>Input: Text documents<br>× No topic labels<br>Soal: Group by topics                         | Autonomous Driving<br>Reinforcement Learning<br>☐ Input: Sensor data<br>Goal: Steering/Speed<br>➤ Goal: Safe navigation |

-

# Advantages and Limitations

| Learning Type | Advantages                                                                                                                                     | Limitations                                                                                                                                 |
|---------------|------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|
| Supervised    | <ul> <li>Clear objectives</li> <li>Well-established metrics</li> <li>Strong theoretical foundation</li> <li>Predictable performance</li> </ul> | <ul> <li>× Requires labeled data</li> <li>× Expensive data collection</li> <li>× May not generalize</li> <li>× Static learning</li> </ul>   |
| Unsupervised  | <ul> <li>No labeling required</li> <li>Discovers hidden patterns</li> <li>Exploratory analysis</li> <li>Data preprocessing</li> </ul>          | <ul> <li>× Difficult to evaluate</li> <li>× Interpretation challenges</li> <li>× No ground truth</li> <li>× Subjective results</li> </ul>   |
| Reinforcement | <ul> <li>Learns from interaction</li> <li>Handles sequential decisions</li> <li>Adaptive behavior</li> <li>No prior examples needed</li> </ul> | <ul> <li>× Sample inefficient</li> <li>× Exploration challenges</li> <li>× Reward design difficulty</li> <li>× Unstable learning</li> </ul> |

æ

## Mathematical Foundations Comparison

#### **Unsupervised Learning Reinforcement Learning Supervised Learning** Density: $p(x; \theta)$ Value: $V^{\pi}(s) = \mathbb{E}[\sum_{t=0}^{\infty} \gamma^t r_t]$ Loss: $L(\theta) = \sum_{i=1}^{n} \ell(f(x_i; \theta), y_i)$ (5)Likelihood: $\mathcal{L}(\theta) = \prod_{i=1}^{n} p(x_i; \theta)$ (9)(1)Minimize: $\min_{\alpha} L(\theta)$ Q-function: $Q^{\pi}(s, a)$ (10) (2)(6)Bellman: $V(s) = \max_{a} Q(s, a)$ (11) $\mathsf{Maximize:} \ \max_{\theta} \mathsf{log} \, \mathcal{L}(\theta)$ Empirical Risk: $\hat{R}(\theta)$ ( $\theta$ ) (11) (7) step ( $\Omega$ ) Policy: $\pi^*(s) = \arg \max_a Q(s, a)$ (12) Optimization: $\nabla_{\theta} L = 0$ (4) EM Algorithm: E-step, M-step (8)



## Summary: When to Use Each Approach





# **Questions & Discussion**

Understanding the foundations helps choose the right approach sali85@student.gsu.edu Thank you for your attention!

▲□▶ ▲圖▶ ▲필▶ ▲필▶ - 亘 - のへで