Foundations Key Concepts: Rewards, States, Actions, Policies

Sarwan Ali

Department of Computer Science Georgia State University

in Reinforcement Learning Foundations in

<ロト < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 0 < 0 < 1/16

Today's Learning Journey

1 Introduction to RL Components

2 States

3 Actions

4 Rewards

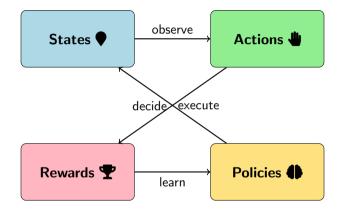
5 Policies

6 Putting It All Together

🕜 Summary

<ロト
(ロト
(日)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)

The Four Pillars of Reinforcement Learning



These four concepts form the foundation of every reinforcement learning problem

States: The World's Description

What is a State?

- A complete description of the environment at a given time
- Contains all relevant information for decision making
- Denoted as $s \in \mathcal{S}$ (state space)

Key Properties:

- Markov Property: Future depends only on current state
- Observable: Agent can perceive the state
- Discrete or Continuous: Finite vs infinite state spaces

Grid World States

Types of States

Fully Observable

- Agent sees complete environment state
- $s_t = environment state$
- Example: Chess, Tic-tac-toe

Partially Observable

- Agent has limited view
- $o_t = \text{observation} \neq \text{state}$
- Must maintain belief state
- Example: Poker, autonomous driving

Agent sees everything

Fully Observable

Limited view

Partially Observable

Mathematical Representation

State space: $S = \{s_1, s_2, \dots, s_n\}$ (discrete) or $S \subseteq \mathbb{R}^n$ (continuous)

Actions: What the Agent Can Do

What is an Action?

- Choices available to the agent
- Way to influence the environment
- Denoted as $a \in \mathcal{A}$ (action space)

Types of Action Spaces:

- Discrete: Finite set of actions
- Continuous: Real-valued actions
- **State-dependent**: $\mathcal{A}(s)$ varies by state

\uparrow $\leftarrow \quad \textcircled{\bullet} \quad \Rightarrow$ \downarrow Discrete Actions

Examples

- Game: {Up, Down, Left, Right, Shoot}
- Trading: {Buy, Sell, Hold}
- **Robot**: Joint angles \mathbb{R}^7 (continuous)

(I) < ((i) <

Discrete Actions: $A = \{a_1, a_2, \dots, a_k\}$. **Examples:** Atari games, Board games, Menu selection

Finite choices

Continuous Actions: $\mathcal{A} \subseteq \mathbb{R}^n$. **Examples:** Robot control, Vehicle steering, Portfolio weights

Infinite possibilities

Mathematical Formulation

Action taken at time $t: a_t \in \mathcal{A}(s_t)$ where $\mathcal{A}(s_t)$ is the set of valid actions in state s_t

Rewards: The Learning Signal

What is a Reward?

- Scalar feedback signal
- Indicates how good an action was
- Denoted as $r_t \in \mathbb{R}$
- The only way agent learns!

Reward Function:

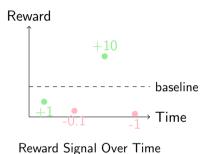
$$R(s, a, s') = \mathbb{E}[r_{t+1}|s_t = s, a_t = a, s_{t+1} = s']$$

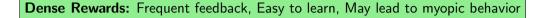
Key Principles:

- Immediate vs Delayed rewards
- Sparse vs Dense rewards
- Positive, negative, or zero

Reward Hypothesis

"All goals can be described by the maximization of expected cumulative reward"





Shaped Rewards: Engineered guidance, Balance of both, Risk of reward hacking

Sparse Rewards: Infrequent feedback, Hard to learn, More realistic

Examples

- Dense: Game score every frame
- Sparse: Win/lose at end of game
- Shaped: Distance to goal + win bonus

Policies: The Agent's Strategy

What is a Policy?

- Agent's behavior function
- Maps states to actions
- Denoted as $\pi: \mathcal{S} \to \mathcal{A}$
- The brain of the agent

Mathematical Definition:

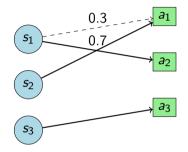
$$\pi(a|s) = P(a_t = a|s_t = s)$$

Types:

- **Deterministic**: $a = \pi(s)$
- **Stochastic**: $\pi(a|s)$ (probability distribution)

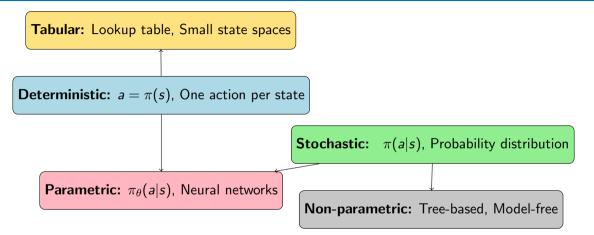
Goal

Find optimal policy π^{\ast} that maximizes expected cumulative reward



Stochastic Policy

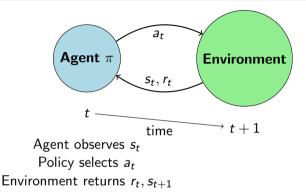
Policy Types and Representations



Policy Optimization

Learning involves finding π^* through exploration and exploitation

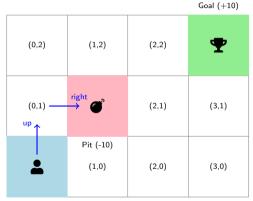
The RL Loop: How Components Interact



The Sequential Decision Process:

- Agent observes state s_t
- 2 Policy π selects action a_t
- Similar Environment provides reward r_t and next state s_{t+1}
- Agent updates policy and repeats

Example: Grid World Navigation



Start

States: Grid positions **Actions:** {up, down, left, right} **Rewards:** Goal: +10, Pit: -10, Step: -1 **Policy:** Navigate to goal safely

Key Relationships

$\textbf{State} \rightarrow \textbf{Action}$

- Policy determines action selection
- $a_t \sim \pi(\cdot|s_t)$

$\textbf{Action} \rightarrow \textbf{Reward}$

- Environment provides feedback
- $r_t = R(s_t, a_t, s_{t+1})$
- $\textbf{Reward} \rightarrow \textbf{Policy}$
 - Learning signal for improvement
 - $\bullet~\pi$ updated to maximize rewards

State observe Action decide State execute Policy Reward

Central Equation

$$\pi^* = \arg \max_{\pi} \mathbb{E} \left[\sum_{t=0}^{\infty} \gamma^t r_t | \pi
ight]$$

Essential Points

- These four components define every RL problem
- Agent learns optimal policy through trial and error
- Goal: Maximize expected cumulative reward
- Foundation for all RL algorithms we'll study

・ロト ・ 同ト ・ ヨト ・ ヨ ・

What's Coming Next?

Examples of RL applications (games, robotics, recommendation systems)

Preparation:

- Review probability theory
- Think about how to formalize the concepts learned today
- Consider: How do we measure policy quality?

These foundations will be the building blocks for everything that follows!