Markov Decision Processes Markov Property and Markov Chains

Sarwan Ali

Department of Computer Science Georgia State University

🤖 Understanding Markov Decision Processes 🗠

Introduction to MDPs

- 2 The Markov Property
- 3 Markov Chains
- 4 Classification of States
- 5 From Markov Chains to MDPs
- 6 Next Steps

Definition

A **Markov Decision Process (MDP)** is a mathematical framework for modeling decision-making in situations where outcomes are partly random and partly under the control of a decision maker.

Key Components:

- States
- Actions
- Transitions
- Rewards
- Policy

Applications:

- Robotics
- Game Playing
- Finance
- Healthcare
- Resource Management

Why MDPs Matter in Reinforcement Learning

Core Insight

MDPs provide the mathematical foundation for formulating reinforcement learning problems where an agent learns optimal behavior through trial and error interactions with an environment.

Markov Property (Memoryless Property)

The future is independent of the past given the present state.

Mathematical Definition:

$$P(S_{t+1} = s' | S_t = s, S_{t-1} = s_{t-1}, \dots, S_0 = s_0) = P(S_{t+1} = s' | S_t = s)$$
(1)

Markov Process:

Tomorrow's weather depends only on today's weather, not on the weather from last week.

Non-Markov Process:

Stock prices that depend on trends from multiple previous days.

Visualizing the Markov Property

Past is irrelevant Only Current State Matters!

Key Insight

The Markov property allows us to make predictions about the future using only the current state, dramatically simplifying the computational complexity of decision-making problems.

Examples: Markov vs Non-Markov

Markov Examples

- Weather: Today's weather determines tomorrow's
- **Chess:** Current board position contains all relevant information
- **Inventory:** Current stock level determines future decisions
- **Traffic Light:** Current light color determines next state

Non-Markov Examples

- Stock Market: Historical trends matter
- Disease Diagnosis: Patient history is crucial
- Language: Previous words affect meaning
- Poker: Memory of played cards matters

Making Non-Markov Problems Markov

We can often make non-Markov problems Markov by **expanding the state space** to include relevant history.

Markov Chains: Definition and Properties

Definition

A **Markov Chain** is a sequence of random variables S_0, S_1, S_2, \ldots where each variable satisfies the Markov property.

Key Components:

- State Space: $S = \{s_1, s_2, \dots, s_n\}$ (finite set of states)
- Transition Probabilities: $P_{ij} = P(S_{t+1} = j | S_t = i)$
- Transition Matrix: $\mathbf{P} = [P_{ij}]_{n \times n}$
- Initial Distribution: $\pi_0 = [\pi_0(s_1), \pi_0(s_2), \dots, \pi_0(s_n)]$

Properties of Transition Matrix

- Each row sums to 1: $\sum_{j=1}^{n} P_{ij} = 1$
- All entries are non-negative: $P_{ij} \ge 0$

Simple Weather Example

Transition Matrix:

$$\mathbf{P} = \begin{bmatrix} 0.7 & 0.3\\ 0.6 & 0.4 \end{bmatrix} \tag{2}$$

Interpretation:

- If sunny today: 70% chance sunny tomorrow
- If rainy today: 60% chance sunny tomorrow

Question

If it's sunny today, what's the probability it will be sunny in 2 days? Answer: $P_{11}^2 = 0.7^2 + 0.3 \times 0.6 = 0.49 + 0.18 = 0.67$

n-Step Transition Probabilities

Chapman-Kolmogorov Equation

The probability of transitioning from state i to state j in n steps:

$$P_{ij}^{(n)} = (\mathbf{P}^n)_{ij} \tag{3}$$

For our weather example:

$$\mathbf{P}^{2} = \begin{bmatrix} 0.7 & 0.3 \\ 0.6 & 0.4 \end{bmatrix}^{2} = \begin{bmatrix} 0.67 & 0.33 \\ 0.66 & 0.34 \end{bmatrix}$$
(4)
$$\mathbf{P}^{3} = \begin{bmatrix} 0.667 & 0.333 \\ 0.666 & 0.334 \end{bmatrix}$$
(5)

Observation

As $n \to \infty$, the transition probabilities approach a steady state, regardless of the initial state!

Definition

A stationary distribution π satisfies: $\pi = \pi P$, or equivalently: $\pi^T = P^T \pi^T$

For our weather example:

$$[\pi_s, \pi_r] = [\pi_s, \pi_r] \begin{bmatrix} 0.7 & 0.3 \\ 0.6 & 0.4 \end{bmatrix}$$

$$\pi_s = 0.7\pi_s + 0.6\pi_r$$

$$\pi_r = 0.3\pi_s + 0.4\pi_r$$
(8)

With
$$\pi_s + \pi_r = 1$$
, we get: $\pi_s = \frac{2}{3}, \pi_r = \frac{1}{3}$

Interpretation

In the long run, it's sunny $\frac{2}{3}$ of the time and rainy $\frac{1}{3}$ of the time, regardless of today's weather!

Accessibility and Communication

- State *j* is **accessible** from state *i* if $P_{ij}^{(n)} > 0$ for some $n \ge 0$
- States *i* and *j* communicate if they are accessible from each other
- Communication is an equivalence relation, partitioning states into **communicating classes**

Irreducible Chain:

- All states communicate
- Only one communicating class
- Every state can reach every other state

Reducible Chain:

- Multiple communicating classes
- Some states cannot reach others
- Chain can be "reduced"

Transient vs Recurrent States

Definitions

- A state is **recurrent** if, starting from that state, the probability of eventually returning to it is 1
- A state is **transient** if, starting from that state, there's a positive probability of never returning to it

Key Property

In a finite Markov chain, not all states can be transient. There must be at least one recurrent state. $^{13/11}$

From Markov Chain to MDP

A Markov Chain becomes an MDP when we add:

- Actions: ${\mathcal A}$ set of possible actions
- **Rewards:** R(s, a, s') reward for transitioning from s to s' via action a
- Policy: $\pi(a|s)$ probability of taking action a in state s

State Transition becomes Action-Dependent:

$$P(S_{t+1} = s' | S_t = s, A_t = a) = P^a_{ss'}$$
(9)

Markov Chain:

- Passive observation
- Fixed transition probabilities
- No control over process

MDP:

- Active decision making
- Action-dependent transitions
- Agent controls the process

Example: Robot Navigation MDP

MDP Components:

- States: Grid positions (S, 1, 2, ..., 9, G)
- Actions: {Up, Down, Left, Right}
- Transitions: Move to adjacent cell (with some noise)
- Rewards: +10 for reaching goal, -1 for each step, -10 for obstacle

Key Concepts Summary

Markov Property

Future depends only on present, not on past \Rightarrow Computational efficiency

Markov Chains

Sequential process with Markov property \Rightarrow Foundation for understanding state evolution

State Classification

Transient vs Recurrent, Communicating classes \Rightarrow Long-term behavior analysis

Stationary Distribution

Long-term equilibrium probabilities \Rightarrow Steady-state analysis

Markov Chains \rightarrow MDPs

Add actions and rewards \Rightarrow Decision-making framework for RL

Finite MDPs

- States
- Actions
- Rewards
- Transition probabilities

Thank you for your attention!

Questions?