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What are Markov Decision Processes?

Definition

A Markov Decision Process (MDP) is a mathematical framework for modeling
decision-making in situations where outcomes are partly random and partly under the control
of a decision maker.

Key Components:

States

Actions

Transitions

Rewards

Policy

Applications:

Robotics

Game Playing

Finance

Healthcare

Resource Management
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Why MDPs Matter in Reinforcement Learning

Agent Environment

Action at

State st+1, Reward rt

Decision Maker MDP

Core Insight

MDPs provide the mathematical foundation for formulating reinforcement learning problems
where an agent learns optimal behavior through trial and error interactions with an
environment.
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The Markov Property: Core Concept

Markov Property (Memoryless Property)

The future is independent of the past given the present state.

Mathematical Definition:

P(St+1 = s ′|St = s, St−1 = st−1, . . . ,S0 = s0) = P(St+1 = s ′|St = s) (1)

Markov Process:
Tomorrow’s weather depends only on today’s
weather, not on the weather from last week.

Non-Markov Process:
Stock prices that depend on trends from
multiple previous days.
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Visualizing the Markov Property
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Only Current State Matters!Past is irrelevant

Key Insight

The Markov property allows us to make predictions about the future using only the current
state, dramatically simplifying the computational complexity of decision-making problems.

6 / 17



Examples: Markov vs Non-Markov

Markov Examples

Weather: Today’s weather determines
tomorrow’s

Chess: Current board position contains
all relevant information

Inventory: Current stock level
determines future decisions

Traffic Light: Current light color
determines next state

Non-Markov Examples

Stock Market: Historical trends matter

Disease Diagnosis: Patient history is
crucial

Language: Previous words affect
meaning

Poker: Memory of played cards matters

Making Non-Markov Problems Markov

We can often make non-Markov problems Markov by expanding the state space to include
relevant history.
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Markov Chains: Definition and Properties

Definition

A Markov Chain is a sequence of random variables S0, S1,S2, . . . where each variable satisfies
the Markov property.

Key Components:

State Space: S = {s1, s2, . . . , sn} (finite set of states)
Transition Probabilities: Pij = P(St+1 = j |St = i)
Transition Matrix: P = [Pij ]n×n

Initial Distribution: π0 = [π0(s1), π0(s2), . . . , π0(sn)]

Properties of Transition Matrix

Each row sums to 1:
∑n

j=1 Pij = 1

All entries are non-negative: Pij ≥ 0
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Simple Weather Example

Sunny Rainy

0.3

0.6

0.7 0.4

Transition Matrix:

P =

[
0.7 0.3
0.6 0.4

]
(2)

Interpretation:

If sunny today: 70% chance sunny
tomorrow

If rainy today: 60% chance sunny
tomorrow

Question

If it’s sunny today, what’s the probability it will be sunny in 2 days?
Answer: P2

11 = 0.72 + 0.3× 0.6 = 0.49 + 0.18 = 0.67
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n-Step Transition Probabilities

Chapman-Kolmogorov Equation

The probability of transitioning from state i to state j in n steps:

P
(n)
ij = (Pn)ij (3)

For our weather example:

P2 =

[
0.7 0.3
0.6 0.4

]2
=

[
0.67 0.33
0.66 0.34

]
(4)

P3 =

[
0.667 0.333
0.666 0.334

]
(5)

Observation

As n → ∞, the transition probabilities approach a steady state, regardless of the initial state!
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Stationary Distribution

Definition

A stationary distribution π satisfies: π = πP, or equivalently: πT = PTπT

For our weather example:

[πs , πr ] = [πs , πr ]

[
0.7 0.3
0.6 0.4

]
(6)

πs = 0.7πs + 0.6πr (7)

πr = 0.3πs + 0.4πr (8)

With πs + πr = 1, we get: πs =
2
3 , πr =

1
3

Interpretation

In the long run, it’s sunny 2
3 of the time and rainy 1

3 of the time, regardless of today’s weather!
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State Classification

Accessibility and Communication

State j is accessible from state i if P
(n)
ij > 0 for some n ≥ 0

States i and j communicate if they are accessible from each other

Communication is an equivalence relation, partitioning states into communicating
classes

Irreducible Chain:

All states communicate

Only one communicating class

Every state can reach every other state

Reducible Chain:

Multiple communicating classes

Some states cannot reach others

Chain can be ”reduced”
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Transient vs Recurrent States

Definitions

A state is recurrent if, starting from that state, the probability of eventually returning to
it is 1

A state is transient if, starting from that state, there’s a positive probability of never
returning to it

1 2

3 4

5Transient

Recurrent

Key Property

In a finite Markov chain, not all states can be transient. There must be at least one recurrent
state.
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Adding Actions and Rewards

From Markov Chain to MDP

A Markov Chain becomes an MDP when we add:

Actions: A - set of possible actions

Rewards: R(s, a, s ′) - reward for transitioning from s to s ′ via action a

Policy: π(a|s) - probability of taking action a in state s

State Transition becomes Action-Dependent:

P(St+1 = s ′|St = s,At = a) = Pa
ss′ (9)

Markov Chain:

Passive observation

Fixed transition probabilities

No control over process

MDP:

Active decision making

Action-dependent transitions

Agent controls the process
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Example: Robot Navigation MDP

S 1 2 G

3 X 4 5

6 7 8 9

Æ �

MDP Components:

States: Grid positions (S, 1, 2, ..., 9, G)

Actions: {Up, Down, Left, Right}
Transitions: Move to adjacent cell (with some noise)

Rewards: +10 for reaching goal, -1 for each step, -10 for obstacle
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Key Concepts Summary

Markov Property

Future depends only on present, not on past ⇒ Computational efficiency

Markov Chains

Sequential process with Markov property ⇒ Foundation for understanding state evolution

State Classification

Transient vs Recurrent, Communicating classes ⇒ Long-term behavior analysis

Stationary Distribution

Long-term equilibrium probabilities ⇒ Steady-state analysis

Markov Chains → MDPs

Add actions and rewards ⇒ Decision-making framework for RL
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What’s Coming Next

Finite MDPs

States

Actions

Rewards

Transition probabilities

Thank you for your attention!

® Questions?
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