Markov Decision Processes Finite MDPs: States, Actions, Rewards, and Transition Probabilities

Sarwan Ali

Department of Computer Science Georgia State University

🤖 Understanding Markov Decision Processes 🗠

< □ > < □ > < □ > < ≧ > < ≧ > < ≧ > ≧ の Q (~ 1/30

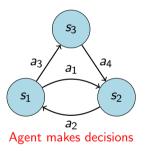
Today's Learning Journey

- Introduction to MDPs
- 2 The Markov Property
- 3 Finite MDPs
- 4 States
- 5 Actions
- 6 Rewards
- Transition Probabilities
- 8 Putting It All Together
- Policies and Value Functions
- 10 Optimal Policies
- Summary

Definition: A mathematical framework for modeling decision-making in situations where outcomes are partly random and partly under the control of a decision maker.

Key Components:

- States Possible situations
- Actions Available choices
- Rewards Immediate feedback
- Transitions State changes



(a)

Real-World Applications:

- Robotics navigation
- Game playing (Chess, Go)
- Resource allocation
- Financial trading
- Medical treatment planning
- Autonomous vehicles

Mathematical Foundation:

- Provides formal framework
- Enables optimal decision making
- Handles uncertainty
- Sequential decision problems
- Basis for reinforcement learning

Key Insight

MDPs bridge the gap between theoretical mathematics and practical AI applications.

The Markov Property

Definition

The **Markov Property** states that the future is independent of the past given the present state.

Mathematically:

$$P(S_{t+1} = s'|S_t = s, S_{t-1} = s_{t-1}, \dots, S_0 = s_0) = P(S_{t+1} = s'|S_t = s)$$

Markov Process:

- Current state contains all relevant information
- Past history doesn't matter
- "Memoryless" property

Non-Markov Process:

- Future depends on history
- Need to remember past states
- More complex modeling required

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

Markov Property Examples

Markov Examples:

- Chess position
- Current location in a maze
- Portfolio value
- Weather today (simplified)

Non-Markov Examples:

- Stock market trends
- Language modeling
- Medical diagnosis
- Social interactions

Chess

Current board position contains all information needed to determine valid next moves and their probabilities.

Stock Market

Past price movements often influence future trends, violating the Markov property.

Formal Definition of Finite MDP

A finite Markov Decision Process is a 4-tuple: $\langle S, A, P, R \rangle$

- S: Finite set of **states**
- \mathcal{A} : Finite set of **actions**
- \mathcal{P} : Transition probability function
- \mathcal{R} : **Reward** function

Transition Dynamics

$$P(s', r|s, a) = \Pr\{S_{t+1} = s', R_{t+1} = r|S_t = s, A_t = a\}$$

This defines the probability of transitioning to state s' and receiving reward r when taking action a in state s.

MDP Components in Detail

States (S):

- Complete description of the world
- Must satisfy Markov property
- Examples: positions, configurations

Actions (\mathcal{A}) :

- Choices available to agent
- May depend on current state
- $\mathcal{A}(s) = \text{actions in state } s$

Rewards (\mathcal{R}):

- Immediate feedback signal
- Scalar values
- Guide learning process

Transitions (\mathcal{P}):

- Probability distributions
- Model uncertainty
- Sum to 1 for each state-action pair

Key Constraint

For finite MDPs: $|\mathcal{S}| < \infty$ and $|\mathcal{A}| < \infty$

Э

State represents all information necessary to make optimal decisions.

Properties of Good States:

- **Organization Completeness:** Contains all relevant information
- Ø Markov: Future independent of past given present
- Oiscriminative: Different states lead to different optimal actions

State Space Design:

- Too small \Rightarrow loses important information
- Too large \Rightarrow computational complexity
- Balance between expressiveness and tractability

Grid World States

A D > A B > A B > A B >

State Representation Examples

Grid World:

- State: (x, y) coordinates
- Simple and intuitive
- $S = \{(i, j) : 0 \le i < width, 0 \le j < width\}$

Tic-Tac-Toe:

- State: Board configuration
- Each cell: $\{X, O, empty\}$
- $|\mathcal{S}| = 3^9 = 19,683$ (theoretical)

Robot Navigation:

- State: (x, y, θ) position and orientation
- May include velocity information
- Continuous \Rightarrow discretization needed

Inventory Management:

- State: Current inventory levels
- Time of year, demand patterns
- Supply chain status

State Design Principle

Include **sufficient** information to make optimal decisions, but **minimal** information to keep the problem tractable.

Understanding Actions

Actions represent the choices available to the agent at each state.

Action Properties:

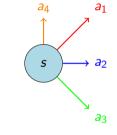
- May be state-dependent: $\mathcal{A}(s)$
- Discrete or continuous
- Deterministic or stochastic effects

Action Space Types:

- Finite Discrete: $\mathcal{A} = \{a_1, a_2, \dots, a_n\}$
- **2** Continuous: $\mathcal{A} \subseteq \mathbb{R}^d$
- **O Hybrid:** Mix of discrete and continuous

Important Note

In finite MDPs, we focus on finite action spaces: $|\mathcal{A}| < \infty$



Action Examples

Grid World Navigation:

 $\mathcal{A} = \{North, South, East, West\}$

Game Playing (Chess):

- Legal moves depend on current position
- $\mathcal{A}(s)$ varies by state
- Complex action space

Atari Games:

 $\mathcal{A} = \{\textit{Fire}, \textit{Left}, \textit{Right}, \textit{NoOp}, \ldots\}$

State-Dependent Actions Example

In a maze, action "move north" is only available if there's no wall to the north of current position.

Robot Control:

- Joint angles/velocities
- Motor commands
- High-level behaviors

Resource Allocation:

- How much to invest
- Which resources to allocate
- Binary decisions (yes/no)

Understanding Rewards

Rewards provide immediate feedback to guide the agent's learning.

Reward Function:

 $R:\mathcal{S}\times\mathcal{A}\times\mathcal{S}\rightarrow\mathbb{R}$

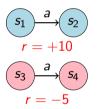
Or simplified: R(s, a) or R(s)

Reward Properties:

- Scalar signal (single number)
- Immediate feedback
- Defines the objective
- Can be positive, negative, or zero

Reward Hypothesis

All goals and purposes can be thought of as maximization of expected cumulative reward.



Reward Design Principles

Good Reward Design:

- Reflects true objective
- Provides clear guidance
- Avoids reward hacking
- Considers long-term consequences

Example - Navigation:

- Goal reached: +100
- Each step: -1
- Hit obstacle: -10

Common Pitfalls:

- Reward hacking
- Sparse rewards
- Misaligned incentives
- Local optima

Example - Bad Design:

- Only goal: +100
- Everything else: 0
- \Rightarrow No guidance!

Key Insight

Reward engineering is crucial - the agent will optimize exactly what you reward, not necessarily what you want!

Dense Rewards:

- Frequent feedback
- Every action gets reward
- Easier learning
- Example: -1 per step

Sparse Rewards:

- Infrequent feedback
- Most actions get 0 reward
- Harder learning
- Example: Only at goal

Intrinsic vs Extrinsic:

- Extrinsic: Environment provides
- Intrinsic: Agent generates
- Curiosity, exploration bonuses

Reward Shaping:

- Additional guidance rewards
- Must preserve optimal policy
- Potential-based shaping

Transition probabilities model the dynamics of the environment.

Mathematical Definition:

$$P(s'|s, a) = \Pr\{S_{t+1} = s'|S_t = s, A_t = a\}$$

Properties:

- $0 \le P(s'|s,a) \le 1$ for all s',s,a
- $\sum_{s'\in\mathcal{S}} P(s'|s,a) = 1$ for all s,a
- Encodes environment uncertainty
- May be unknown to the agent

Deterministic: $P(s'|s, a) \in \{0, 1\}$

Stochastic: 0 < P(s'|s, a) < 1

Transition Probability Examples

Deterministic Grid World:

- Actions work with 100% certainty
- P(s'|s, a) = 1 for intended next state
- P(s'|s, a) = 0 for all other states

Stochastic Grid World:

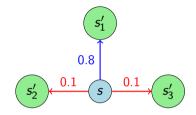
- Actions may fail
- P(intended|s, a) = 0.8
- P(|eft|s, a) = 0.1
- P(right|s, a) = 0.1

Transition Matrix

For finite MDPs, transitions can be represented as matrices:

$$\mathbf{P}^{a}_{ss'} = P(s'|s,a)$$

where each row sums to 1.



Action: "Go Up"

Working with Transition Probabilities

Transition Matrix Example:

Consider a 3-state MDP with action a:

$$\mathbf{P}^{s} = egin{pmatrix} 0.7 & 0.2 & 0.1 \ 0.1 & 0.8 & 0.1 \ 0.2 & 0.3 & 0.5 \end{pmatrix}$$

Reading the matrix:
$$\mathbf{P}_{ij}^a = P(s_j | s_i, a)$$

Properties to Check:

- Each row sums to 1
- All entries ≥ 0
- Represents valid probability distribution

Interpretation:

- From s_1 : 70% stay, 20% to s_2 , 10% to s_3
- From s_2 : 10% to s_1 , 80% stay, 10% to s_3
- From s_3 : 20% to s_1 , 30% to s_2 , 50% stay

MDP Dynamics

Complete MDP Specification:

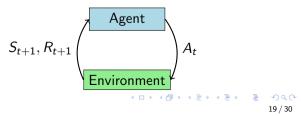
$$\mathsf{P}(s', r | s, a) = \mathsf{Pr}\{S_{t+1} = s', R_{t+1} = r | S_t = s, A_t = a\}$$

Decomposition:

$$P(s'|s,a) = \sum_{r \in \mathcal{R}} P(s',r|s,a)$$
(1)
$$R(s,a) = \sum_{r \in \mathcal{R}} r \sum_{s' \in \mathcal{S}} P(s',r|s,a)$$
(2)

The Agent-Environment Interface:

- Agent observes state S_t
- Agent takes action A_t
- Environment returns S_{t+1} and R_{t+1}
- Process repeats



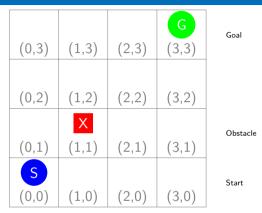
A Complete MDP Example: Grid World

Problem Setup:

- 4×4 grid
- Start at (0,0)
- Goal at (3,3)
- Obstacle at (1,1)
- **States:** $S = \{(i, j) : 0 \le i, j \le 3\} \setminus \{(1, 1)\}$ **Actions:** $A = \{N, S, E, W\}$ **Rewards:**
 - Goal: +10
 - Each step: −1
 - Invalid move: -1 (stay in place)

Transition Probabilities:

- $\bullet\,$ Deterministic: Actions succeed with probability 1
- $\bullet\,$ Invalid actions (into walls/obstacles) keep agent in same state



Grid World MDP

・ ロ ト ・ 回 ト ・ 三 ト ・ 三 ト

3

MDP Example: Transition Details

Example Transitions from State (2, 1):

Action	Next State	Probability	Reward
North	(2,2)	1.0	-1
South	(2,0)	1.0	-1
East	(3, 1)	1.0	-1
West	(2, 1)	1.0	-1

Special Cases:

- From goal state (3,3): All actions lead back to goal with reward 0
- Actions leading into obstacles: Agent stays in current state
- Actions leading outside grid: Agent stays in current state

Key Observation

This MDP is deterministic - each state-action pair has exactly one possible outcome.

Policies

Policy π : A strategy for choosing actions.

```
Deterministic Policy: \pi : S \to A
```

$$a=\pi(s)$$

Stochastic Policy: $\pi : S \times A \rightarrow [0, 1]$

$$\pi(a|s) = \Pr\{A_t = a|S_t = s\}$$

Properties:

- Maps states to actions
- Can be deterministic or stochastic
- Defines agent's behavior
- Goal: Find optimal policy

Examples:

- Random policy: $\pi(a|s) = \frac{1}{|\mathcal{A}|}$
- Greedy policy: Always best action
- ϵ -greedy: Mostly greedy, sometimes random

Value Functions

Value functions measure how good it is to be in a state or take an action.

State Value Function:

$$\mathcal{V}^{\pi}(s) = \mathbb{E}_{\pi}\left[\sum_{t=0}^{\infty} \gamma^t \mathcal{R}_{t+1} | \mathcal{S}_0 = s
ight]$$

Action Value Function (Q-function):

$$Q^{\pi}(s, a) = \mathbb{E}_{\pi}\left[\sum_{t=0}^{\infty} \gamma^t R_{t+1} | S_0 = s, A_0 = a
ight]$$

• $\gamma \in [0,1]$: discount factor

- $\gamma = 0$: Only immediate rewards matter
- $\gamma = 1$: All future rewards equally important
- $\gamma < 1:$ Ensures convergence for infinite horizons

・ロ・・(型・・モー・・モー・

Bellman Equations

Bellman Equations provide recursive relationships for value functions. **Bellman Equation for** V^{π} :

$$V^{\pi}(s) = \sum_{a} \pi(a|s) \sum_{s',r} P(s',r|s,a)[r+\gamma V^{\pi}(s')]$$

Bellman Equation for Q^{π} :

$$Q^{\pi}(s,a) = \sum_{s',r} P(s',r|s,a) \left[r + \gamma \sum_{a'} \pi(a'|s') Q^{\pi}(s',a')
ight]$$

Relationship between V and Q:

$$V^{\pi}(s) = \sum_{a} \pi(a|s)Q^{\pi}(s,a)$$
(3)
$$Q^{\pi}(s,a) = \sum_{s',r} P(s',r|s,a)[r+\gamma V^{\pi}(s')]$$
(4)

24 / 30

Optimal Policies and Value Functions

Goal: Find the best possible policy.

Optimal State Value Function:

$$V^*(s) = \max_\pi V^\pi(s) \quad orall s \in \mathcal{S}$$

Optimal Action Value Function:

$$Q^*(s,a) = \max_{\pi} Q^{\pi}(s,a) \quad orall s \in \mathcal{S}, a \in \mathcal{A}$$

Optimal Policy:

$$\pi^*(s) = rg\max_a Q^*(s,a)$$

Key Theorem

For finite MDPs, there exists at least one optimal policy π^* that is better than or equal to all other policies.

Bellman Optimality Equations

Bellman Optimality Equation for V^* :

$$V^*(s) = \max_a \sum_{s',r} P(s',r|s,a)[r+\gamma V^*(s')]$$

Bellman Optimality Equation for Q^* :

$$Q^*(s, a) = \sum_{s', r} P(s', r|s, a) \left[r + \gamma \max_{a'} Q^*(s', a') \right]$$

Solving MDPs:

- Value Iteration: Iteratively update value function
- Policy Iteration: Alternate between policy evaluation and improvement
- Linear Programming: Formulate as optimization problem

Computational Complexity

For finite MDPs with |S| states and |A| actions, solving requires $O(|S|^2|A|)$ operations per iteration.

Key Takeaways

Markov Decision Processes provide a mathematical framework for sequential decision making under uncertainty.

Essential Components:

- States Complete description of the situation
- Actions Available choices for the agent
- Sewards Immediate feedback signal
- **9** Transition Probabilities Environment dynamics

Key Concepts:

- Markov Property: Future depends only on present state
- Policies: Strategies for action selection
- Value Functions: Measure goodness of states/actions
- Bellman Equations: Recursive relationships for optimal solutions

Applications and Extensions

Real Applications:

- Autonomous vehicles
- Game playing (AlphaGo, Chess)
- Resource management
- Medical treatment planning
- Financial trading
- Robotics control

Extensions:

- Partially Observable MDPs (POMDPs)
- Continuous state/action spaces
- Multi-agent MDPs
- Hierarchical MDPs
- Constrained MDPs
- Infinite horizon problems

Connection to Machine Learning

MDPs form the foundation of **Reinforcement Learning**, where agents learn optimal policies through interaction with the environment.

Building on MDPs:

- **Oynamic Programming:** Value iteration, policy iteration
- Ø Monte Carlo Methods: Learning from episodes
- **Temporal Difference Learning:** Q-learning, SARSA
- Function Approximation: Handling large state spaces
- **Deep Reinforcement Learning:** Neural networks + RL

Practical Considerations:

- State space design
- Reward engineering
- Exploration vs exploitation
- Sample efficiency
- Computational complexity

イロン 不良 とうせい かいしょう

Thank You!

Questions & Discussion

sali85@student.gsu.edu