
Markov Decision Processes
Finite MDPs: States, Actions, Rewards, and Transition Probabilities

Sarwan Ali

Department of Computer Science
Georgia State University

Æ Understanding Markov Decision Processes ¢

1 / 30



Today’s Learning Journey

1 Introduction to MDPs

2 The Markov Property

3 Finite MDPs

4 States

5 Actions

6 Rewards

7 Transition Probabilities

8 Putting It All Together

9 Policies and Value Functions

10 Optimal Policies

11 Summary

2 / 30



What is a Markov Decision Process?

Definition: A mathematical framework for modeling
decision-making in situations where outcomes are partly
random and partly under the control of a decision maker.

Key Components:

States - Possible situations

Actions - Available choices

Rewards - Immediate feedback

Transitions - State changes

s1 s2

s3

a1

a2

a3 a4

Agent makes decisions
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Why Study MDPs?

Real-World Applications:

Robotics navigation

Game playing (Chess, Go)

Resource allocation

Financial trading

Medical treatment planning

Autonomous vehicles

Mathematical Foundation:

Provides formal framework

Enables optimal decision making

Handles uncertainty

Sequential decision problems

Basis for reinforcement learning

Key Insight

MDPs bridge the gap between theoretical mathematics and practical AI applications.
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The Markov Property

Definition

The Markov Property states that the future is independent of the past given the present
state.

Mathematically:

P(St+1 = s ′|St = s, St−1 = st−1, . . . ,S0 = s0) = P(St+1 = s ′|St = s)

Markov Process:

Current state contains all relevant
information

Past history doesn’t matter

“Memoryless” property

Non-Markov Process:

Future depends on history

Need to remember past states

More complex modeling required
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Markov Property Examples

Markov Examples:

Chess position

Current location in a maze

Portfolio value

Weather today (simplified)

Chess

Current board position contains all
information needed to determine valid next
moves and their probabilities.

Non-Markov Examples:

Stock market trends

Language modeling

Medical diagnosis

Social interactions

Stock Market

Past price movements often influence future
trends, violating the Markov property.
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Formal Definition of Finite MDP

A finite Markov Decision Process is a 4-tuple: ⟨S,A,P,R⟩

S: Finite set of states

A: Finite set of actions

P: Transition probability function

R: Reward function

Transition Dynamics

P(s ′, r |s, a) = Pr{St+1 = s ′,Rt+1 = r |St = s,At = a}

This defines the probability of transitioning to state s ′ and receiving reward r when taking
action a in state s.
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MDP Components in Detail

States (S):
Complete description of the world

Must satisfy Markov property

Examples: positions, configurations

Actions (A):

Choices available to agent

May depend on current state

A(s) = actions in state s

Rewards (R):

Immediate feedback signal

Scalar values

Guide learning process

Transitions (P):

Probability distributions

Model uncertainty

Sum to 1 for each state-action pair

Key Constraint

For finite MDPs: |S| < ∞ and |A| < ∞
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Understanding States

State represents all information necessary to make optimal decisions.

Properties of Good States:

1 Completeness: Contains all relevant information

2 Markov: Future independent of past given present

3 Discriminative: Different states lead to different
optimal actions

State Space Design:

Too small ⇒ loses important information

Too large ⇒ computational complexity

Balance between expressiveness and tractability

S

G

X

Grid World States

Start

Goal

Obstacle
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State Representation Examples

Grid World:

State: (x , y) coordinates

Simple and intuitive

S = {(i , j) : 0 ≤ i < width, 0 ≤ j <
height}

Tic-Tac-Toe:

State: Board configuration

Each cell: {X ,O, empty}
|S| = 39 = 19, 683 (theoretical)

Robot Navigation:

State: (x , y , θ) position and orientation

May include velocity information

Continuous ⇒ discretization needed

Inventory Management:

State: Current inventory levels

Time of year, demand patterns

Supply chain status

State Design Principle

Include sufficient information to make optimal decisions, but minimal information to keep the
problem tractable.
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Understanding Actions

Actions represent the choices available to the agent at each state.

Action Properties:

May be state-dependent: A(s)

Discrete or continuous

Deterministic or stochastic effects

Action Space Types:

1 Finite Discrete: A = {a1, a2, . . . , an}
2 Continuous: A ⊆ Rd

3 Hybrid: Mix of discrete and continuous

s

a1

a2

a3

a4

Actions from state s

Important Note

In finite MDPs, we focus on finite action spaces: |A| < ∞
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Action Examples

Grid World Navigation:

A = {North, South,East,West}

Game Playing (Chess):

Legal moves depend on current position

A(s) varies by state

Complex action space

Atari Games:

A = {Fire, Left,Right,NoOp, . . .}

Robot Control:

Joint angles/velocities

Motor commands

High-level behaviors

Resource Allocation:

How much to invest

Which resources to allocate

Binary decisions (yes/no)

State-Dependent Actions Example

In a maze, action ”move north” is only available if there’s no wall to the north of current
position.
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Understanding Rewards

Rewards provide immediate feedback to guide the agent’s learning.

Reward Function:

R : S ×A× S → R

Or simplified: R(s, a) or R(s)

Reward Properties:

Scalar signal (single number)

Immediate feedback

Defines the objective

Can be positive, negative, or zero

s1 s2
a

r = +10

s3 s4
a

r = −5

Reward Hypothesis

All goals and purposes can be thought of as maximization of expected cumulative reward.
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Reward Design Principles

Good Reward Design:

Reflects true objective

Provides clear guidance

Avoids reward hacking

Considers long-term consequences

Example - Navigation:

Goal reached: +100

Each step: −1

Hit obstacle: −10

Common Pitfalls:

Reward hacking

Sparse rewards

Misaligned incentives

Local optima

Example - Bad Design:

Only goal: +100

Everything else: 0

⇒ No guidance!

Key Insight

Reward engineering is crucial - the agent will optimize exactly what you reward, not necessarily
what you want!
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Types of Rewards

Dense Rewards:

Frequent feedback

Every action gets reward

Easier learning

Example: −1 per step

Sparse Rewards:

Infrequent feedback

Most actions get 0 reward

Harder learning

Example: Only at goal

Intrinsic vs Extrinsic:

Extrinsic: Environment provides

Intrinsic: Agent generates

Curiosity, exploration bonuses

Reward Shaping:

Additional guidance rewards

Must preserve optimal policy

Potential-based shaping
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Transition Probabilities

Transition probabilities model the dynamics of the environment.

Mathematical Definition:

P(s ′|s, a) = Pr{St+1 = s ′|St = s,At = a}

Properties:

0 ≤ P(s ′|s, a) ≤ 1 for all s ′, s, a∑
s′∈S P(s ′|s, a) = 1 for all s, a

Encodes environment uncertainty

May be unknown to the agent

Deterministic: P(s ′|s, a) ∈ {0, 1} Stochastic: 0 < P(s ′|s, a) < 1
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Transition Probability Examples

Deterministic Grid World:

Actions work with 100% certainty

P(s ′|s, a) = 1 for intended next state

P(s ′|s, a) = 0 for all other states

Stochastic Grid World:

Actions may fail

P(intended|s, a) = 0.8

P(left|s, a) = 0.1

P(right|s, a) = 0.1

s

s ′1

s ′2 s ′3

0.8

0.1 0.1

Action: “Go Up”

Transition Matrix

For finite MDPs, transitions can be represented as matrices:

Pa
ss′ = P(s ′|s, a)

where each row sums to 1.
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Working with Transition Probabilities

Transition Matrix Example:
Consider a 3-state MDP with action a:

Pa =

0.7 0.2 0.1
0.1 0.8 0.1
0.2 0.3 0.5


Reading the matrix: Pa

ij = P(sj |si , a)

Properties to Check:

Each row sums to 1

All entries ≥ 0

Represents valid probability distribution

Interpretation:

From s1: 70% stay, 20% to s2, 10% to s3

From s2: 10% to s1, 80% stay, 10% to s3

From s3: 20% to s1, 30% to s2, 50% stay
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MDP Dynamics

Complete MDP Specification:

P(s ′, r |s, a) = Pr{St+1 = s ′,Rt+1 = r |St = s,At = a}

Decomposition:

P(s ′|s, a) =
∑
r∈R

P(s ′, r |s, a) (1)

R(s, a) =
∑
r∈R

r
∑
s′∈S

P(s ′, r |s, a) (2)

The Agent-Environment Interface:

Agent observes state St

Agent takes action At

Environment returns St+1 and Rt+1

Process repeats

Agent

Environment

AtSt+1,Rt+1
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A Complete MDP Example: Grid World

Problem Setup:

4× 4 grid

Start at (0, 0)

Goal at (3, 3)

Obstacle at (1, 1)

States: S = {(i , j) : 0 ≤ i , j ≤ 3} \ {(1, 1)}
Actions: A = {N,S ,E ,W }
Rewards:

Goal: +10

Each step: −1

Invalid move: −1 (stay in place)

S

G

X

(0,0)

(0,1)

(0,2)

(0,3)

(1,0)

(1,1)

(1,2)

(1,3)

(2,0)

(2,1)

(2,2)

(2,3)

(3,0)

(3,1)

(3,2)

(3,3)

Grid World MDP

Start

Goal

Obstacle

Transition Probabilities:

Deterministic: Actions succeed with probability 1
Invalid actions (into walls/obstacles) keep agent in same state
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MDP Example: Transition Details

Example Transitions from State (2, 1):

Action Next State Probability Reward
North (2, 2) 1.0 −1
South (2, 0) 1.0 −1
East (3, 1) 1.0 −1
West (2, 1) 1.0 −1

Special Cases:

From goal state (3, 3): All actions lead back to goal with reward 0

Actions leading into obstacles: Agent stays in current state

Actions leading outside grid: Agent stays in current state

Key Observation

This MDP is deterministic - each state-action pair has exactly one possible outcome.
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Policies

Policy π: A strategy for choosing actions.

Deterministic Policy: π : S → A
a = π(s)

Stochastic Policy: π : S ×A → [0, 1]

π(a|s) = Pr{At = a|St = s}

Properties:

Maps states to actions

Can be deterministic or stochastic

Defines agent’s behavior

Goal: Find optimal policy

Examples:

Random policy: π(a|s) = 1
|A|

Greedy policy: Always best action

ϵ-greedy: Mostly greedy, sometimes
random
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Value Functions

Value functions measure how good it is to be in a state or take an action.

State Value Function:

V π(s) = Eπ

[ ∞∑
t=0

γtRt+1|S0 = s

]
Action Value Function (Q-function):

Qπ(s, a) = Eπ

[ ∞∑
t=0

γtRt+1|S0 = s,A0 = a

]

γ ∈ [0, 1]: discount factor

γ = 0: Only immediate rewards matter

γ = 1: All future rewards equally important

γ < 1: Ensures convergence for infinite horizons
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Bellman Equations

Bellman Equations provide recursive relationships for value functions.
Bellman Equation for V π:

V π(s) =
∑
a

π(a|s)
∑
s′,r

P(s ′, r |s, a)[r + γV π(s ′)]

Bellman Equation for Qπ:

Qπ(s, a) =
∑
s′,r

P(s ′, r |s, a)

[
r + γ

∑
a′

π(a′|s ′)Qπ(s ′, a′)

]
Relationship between V and Q:

V π(s) =
∑
a

π(a|s)Qπ(s, a) (3)

Qπ(s, a) =
∑
s′,r

P(s ′, r |s, a)[r + γV π(s ′)] (4)
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Optimal Policies and Value Functions

Goal: Find the best possible policy.

Optimal State Value Function:

V ∗(s) = max
π

V π(s) ∀s ∈ S

Optimal Action Value Function:

Q∗(s, a) = max
π

Qπ(s, a) ∀s ∈ S, a ∈ A

Optimal Policy:
π∗(s) = argmax

a
Q∗(s, a)

Key Theorem

For finite MDPs, there exists at least one optimal policy π∗ that is better than or equal to all
other policies.
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Bellman Optimality Equations

Bellman Optimality Equation for V ∗:

V ∗(s) = max
a

∑
s′,r

P(s ′, r |s, a)[r + γV ∗(s ′)]

Bellman Optimality Equation for Q∗:

Q∗(s, a) =
∑
s′,r

P(s ′, r |s, a)
[
r + γmax

a′
Q∗(s ′, a′)

]
Solving MDPs:

Value Iteration: Iteratively update value function
Policy Iteration: Alternate between policy evaluation and improvement
Linear Programming: Formulate as optimization problem

Computational Complexity

For finite MDPs with |S| states and |A| actions, solving requires O(|S|2|A|) operations per
iteration.
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Key Takeaways

Markov Decision Processes provide a mathematical framework for sequential decision
making under uncertainty.

Essential Components:
1 States - Complete description of the situation
2 Actions - Available choices for the agent
3 Rewards - Immediate feedback signal
4 Transition Probabilities - Environment dynamics

Key Concepts:

Markov Property: Future depends only on present state

Policies: Strategies for action selection

Value Functions: Measure goodness of states/actions

Bellman Equations: Recursive relationships for optimal solutions
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Applications and Extensions

Real Applications:

Autonomous vehicles

Game playing (AlphaGo, Chess)

Resource management

Medical treatment planning

Financial trading

Robotics control

Extensions:

Partially Observable MDPs (POMDPs)

Continuous state/action spaces

Multi-agent MDPs

Hierarchical MDPs

Constrained MDPs

Infinite horizon problems

Connection to Machine Learning

MDPs form the foundation of Reinforcement Learning, where agents learn optimal policies
through interaction with the environment.
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Next Steps

Building on MDPs:

1 Dynamic Programming: Value iteration, policy iteration
2 Monte Carlo Methods: Learning from episodes
3 Temporal Difference Learning: Q-learning, SARSA
4 Function Approximation: Handling large state spaces
5 Deep Reinforcement Learning: Neural networks + RL

Practical Considerations:

State space design

Reward engineering

Exploration vs exploitation

Sample efficiency

Computational complexity
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Thank You!

Questions & Discussion

® Ü

sali85@student.gsu.edu
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