
Markov Decision Processes
Finite MDPs: States, Actions, Rewards, and Transition Probabilities

Sarwan Ali

Department of Computer Science
Georgia State University

Æ Understanding Markov Decision Processes ¢

1 / 30

Today’s Learning Journey

1 Introduction to MDPs

2 The Markov Property

3 Finite MDPs

4 States

5 Actions

6 Rewards

7 Transition Probabilities

8 Putting It All Together

9 Policies and Value Functions

10 Optimal Policies

11 Summary

2 / 30

What is a Markov Decision Process?

Definition: A mathematical framework for modeling
decision-making in situations where outcomes are partly
random and partly under the control of a decision maker.

Key Components:

States - Possible situations

Actions - Available choices

Rewards - Immediate feedback

Transitions - State changes

s1 s2

s3

a1

a2

a3 a4

Agent makes decisions

3 / 30

Why Study MDPs?

Real-World Applications:

Robotics navigation

Game playing (Chess, Go)

Resource allocation

Financial trading

Medical treatment planning

Autonomous vehicles

Mathematical Foundation:

Provides formal framework

Enables optimal decision making

Handles uncertainty

Sequential decision problems

Basis for reinforcement learning

Key Insight

MDPs bridge the gap between theoretical mathematics and practical AI applications.

4 / 30

The Markov Property

Definition

The Markov Property states that the future is independent of the past given the present
state.

Mathematically:

P(St+1 = s ′|St = s, St−1 = st−1, . . . ,S0 = s0) = P(St+1 = s ′|St = s)

Markov Process:

Current state contains all relevant
information

Past history doesn’t matter

“Memoryless” property

Non-Markov Process:

Future depends on history

Need to remember past states

More complex modeling required

5 / 30

Markov Property Examples

Markov Examples:

Chess position

Current location in a maze

Portfolio value

Weather today (simplified)

Chess

Current board position contains all
information needed to determine valid next
moves and their probabilities.

Non-Markov Examples:

Stock market trends

Language modeling

Medical diagnosis

Social interactions

Stock Market

Past price movements often influence future
trends, violating the Markov property.

6 / 30

Formal Definition of Finite MDP

A finite Markov Decision Process is a 4-tuple: ⟨S,A,P,R⟩

S: Finite set of states

A: Finite set of actions

P: Transition probability function

R: Reward function

Transition Dynamics

P(s ′, r |s, a) = Pr{St+1 = s ′,Rt+1 = r |St = s,At = a}

This defines the probability of transitioning to state s ′ and receiving reward r when taking
action a in state s.

7 / 30

MDP Components in Detail

States (S):
Complete description of the world

Must satisfy Markov property

Examples: positions, configurations

Actions (A):

Choices available to agent

May depend on current state

A(s) = actions in state s

Rewards (R):

Immediate feedback signal

Scalar values

Guide learning process

Transitions (P):

Probability distributions

Model uncertainty

Sum to 1 for each state-action pair

Key Constraint

For finite MDPs: |S| < ∞ and |A| < ∞

8 / 30

Understanding States

State represents all information necessary to make optimal decisions.

Properties of Good States:

1 Completeness: Contains all relevant information

2 Markov: Future independent of past given present

3 Discriminative: Different states lead to different
optimal actions

State Space Design:

Too small ⇒ loses important information

Too large ⇒ computational complexity

Balance between expressiveness and tractability

S

G

X

Grid World States

Start

Goal

Obstacle

9 / 30

State Representation Examples

Grid World:

State: (x , y) coordinates

Simple and intuitive

S = {(i , j) : 0 ≤ i < width, 0 ≤ j <
height}

Tic-Tac-Toe:

State: Board configuration

Each cell: {X ,O, empty}
|S| = 39 = 19, 683 (theoretical)

Robot Navigation:

State: (x , y , θ) position and orientation

May include velocity information

Continuous ⇒ discretization needed

Inventory Management:

State: Current inventory levels

Time of year, demand patterns

Supply chain status

State Design Principle

Include sufficient information to make optimal decisions, but minimal information to keep the
problem tractable.

10 / 30

Understanding Actions

Actions represent the choices available to the agent at each state.

Action Properties:

May be state-dependent: A(s)

Discrete or continuous

Deterministic or stochastic effects

Action Space Types:

1 Finite Discrete: A = {a1, a2, . . . , an}
2 Continuous: A ⊆ Rd

3 Hybrid: Mix of discrete and continuous

s

a1

a2

a3

a4

Actions from state s

Important Note

In finite MDPs, we focus on finite action spaces: |A| < ∞

11 / 30

Action Examples

Grid World Navigation:

A = {North, South,East,West}

Game Playing (Chess):

Legal moves depend on current position

A(s) varies by state

Complex action space

Atari Games:

A = {Fire, Left,Right,NoOp, . . .}

Robot Control:

Joint angles/velocities

Motor commands

High-level behaviors

Resource Allocation:

How much to invest

Which resources to allocate

Binary decisions (yes/no)

State-Dependent Actions Example

In a maze, action ”move north” is only available if there’s no wall to the north of current
position.

12 / 30

Understanding Rewards

Rewards provide immediate feedback to guide the agent’s learning.

Reward Function:

R : S ×A× S → R

Or simplified: R(s, a) or R(s)

Reward Properties:

Scalar signal (single number)

Immediate feedback

Defines the objective

Can be positive, negative, or zero

s1 s2
a

r = +10

s3 s4
a

r = −5

Reward Hypothesis

All goals and purposes can be thought of as maximization of expected cumulative reward.
13 / 30

Reward Design Principles

Good Reward Design:

Reflects true objective

Provides clear guidance

Avoids reward hacking

Considers long-term consequences

Example - Navigation:

Goal reached: +100

Each step: −1

Hit obstacle: −10

Common Pitfalls:

Reward hacking

Sparse rewards

Misaligned incentives

Local optima

Example - Bad Design:

Only goal: +100

Everything else: 0

⇒ No guidance!

Key Insight

Reward engineering is crucial - the agent will optimize exactly what you reward, not necessarily
what you want!

14 / 30

Types of Rewards

Dense Rewards:

Frequent feedback

Every action gets reward

Easier learning

Example: −1 per step

Sparse Rewards:

Infrequent feedback

Most actions get 0 reward

Harder learning

Example: Only at goal

Intrinsic vs Extrinsic:

Extrinsic: Environment provides

Intrinsic: Agent generates

Curiosity, exploration bonuses

Reward Shaping:

Additional guidance rewards

Must preserve optimal policy

Potential-based shaping

15 / 30

Transition Probabilities

Transition probabilities model the dynamics of the environment.

Mathematical Definition:

P(s ′|s, a) = Pr{St+1 = s ′|St = s,At = a}

Properties:

0 ≤ P(s ′|s, a) ≤ 1 for all s ′, s, a∑
s′∈S P(s ′|s, a) = 1 for all s, a

Encodes environment uncertainty

May be unknown to the agent

Deterministic: P(s ′|s, a) ∈ {0, 1} Stochastic: 0 < P(s ′|s, a) < 1

16 / 30

Transition Probability Examples

Deterministic Grid World:

Actions work with 100% certainty

P(s ′|s, a) = 1 for intended next state

P(s ′|s, a) = 0 for all other states

Stochastic Grid World:

Actions may fail

P(intended|s, a) = 0.8

P(left|s, a) = 0.1

P(right|s, a) = 0.1

s

s ′1

s ′2 s ′3

0.8

0.1 0.1

Action: “Go Up”

Transition Matrix

For finite MDPs, transitions can be represented as matrices:

Pa
ss′ = P(s ′|s, a)

where each row sums to 1.
17 / 30

Working with Transition Probabilities

Transition Matrix Example:
Consider a 3-state MDP with action a:

Pa =

0.7 0.2 0.1
0.1 0.8 0.1
0.2 0.3 0.5

Reading the matrix: Pa

ij = P(sj |si , a)

Properties to Check:

Each row sums to 1

All entries ≥ 0

Represents valid probability distribution

Interpretation:

From s1: 70% stay, 20% to s2, 10% to s3

From s2: 10% to s1, 80% stay, 10% to s3

From s3: 20% to s1, 30% to s2, 50% stay

18 / 30

MDP Dynamics

Complete MDP Specification:

P(s ′, r |s, a) = Pr{St+1 = s ′,Rt+1 = r |St = s,At = a}

Decomposition:

P(s ′|s, a) =
∑
r∈R

P(s ′, r |s, a) (1)

R(s, a) =
∑
r∈R

r
∑
s′∈S

P(s ′, r |s, a) (2)

The Agent-Environment Interface:

Agent observes state St

Agent takes action At

Environment returns St+1 and Rt+1

Process repeats

Agent

Environment

AtSt+1,Rt+1

19 / 30

A Complete MDP Example: Grid World

Problem Setup:

4× 4 grid

Start at (0, 0)

Goal at (3, 3)

Obstacle at (1, 1)

States: S = {(i , j) : 0 ≤ i , j ≤ 3} \ {(1, 1)}
Actions: A = {N,S ,E ,W }
Rewards:

Goal: +10

Each step: −1

Invalid move: −1 (stay in place)

S

G

X

(0,0)

(0,1)

(0,2)

(0,3)

(1,0)

(1,1)

(1,2)

(1,3)

(2,0)

(2,1)

(2,2)

(2,3)

(3,0)

(3,1)

(3,2)

(3,3)

Grid World MDP

Start

Goal

Obstacle

Transition Probabilities:

Deterministic: Actions succeed with probability 1
Invalid actions (into walls/obstacles) keep agent in same state

20 / 30

MDP Example: Transition Details

Example Transitions from State (2, 1):

Action Next State Probability Reward
North (2, 2) 1.0 −1
South (2, 0) 1.0 −1
East (3, 1) 1.0 −1
West (2, 1) 1.0 −1

Special Cases:

From goal state (3, 3): All actions lead back to goal with reward 0

Actions leading into obstacles: Agent stays in current state

Actions leading outside grid: Agent stays in current state

Key Observation

This MDP is deterministic - each state-action pair has exactly one possible outcome.

21 / 30

Policies

Policy π: A strategy for choosing actions.

Deterministic Policy: π : S → A
a = π(s)

Stochastic Policy: π : S ×A → [0, 1]

π(a|s) = Pr{At = a|St = s}

Properties:

Maps states to actions

Can be deterministic or stochastic

Defines agent’s behavior

Goal: Find optimal policy

Examples:

Random policy: π(a|s) = 1
|A|

Greedy policy: Always best action

ϵ-greedy: Mostly greedy, sometimes
random

22 / 30

Value Functions

Value functions measure how good it is to be in a state or take an action.

State Value Function:

V π(s) = Eπ

[∞∑
t=0

γtRt+1|S0 = s

]
Action Value Function (Q-function):

Qπ(s, a) = Eπ

[∞∑
t=0

γtRt+1|S0 = s,A0 = a

]

γ ∈ [0, 1]: discount factor

γ = 0: Only immediate rewards matter

γ = 1: All future rewards equally important

γ < 1: Ensures convergence for infinite horizons
23 / 30

Bellman Equations

Bellman Equations provide recursive relationships for value functions.
Bellman Equation for V π:

V π(s) =
∑
a

π(a|s)
∑
s′,r

P(s ′, r |s, a)[r + γV π(s ′)]

Bellman Equation for Qπ:

Qπ(s, a) =
∑
s′,r

P(s ′, r |s, a)

[
r + γ

∑
a′

π(a′|s ′)Qπ(s ′, a′)

]
Relationship between V and Q:

V π(s) =
∑
a

π(a|s)Qπ(s, a) (3)

Qπ(s, a) =
∑
s′,r

P(s ′, r |s, a)[r + γV π(s ′)] (4)

24 / 30

Optimal Policies and Value Functions

Goal: Find the best possible policy.

Optimal State Value Function:

V ∗(s) = max
π

V π(s) ∀s ∈ S

Optimal Action Value Function:

Q∗(s, a) = max
π

Qπ(s, a) ∀s ∈ S, a ∈ A

Optimal Policy:
π∗(s) = argmax

a
Q∗(s, a)

Key Theorem

For finite MDPs, there exists at least one optimal policy π∗ that is better than or equal to all
other policies.

25 / 30

Bellman Optimality Equations

Bellman Optimality Equation for V ∗:

V ∗(s) = max
a

∑
s′,r

P(s ′, r |s, a)[r + γV ∗(s ′)]

Bellman Optimality Equation for Q∗:

Q∗(s, a) =
∑
s′,r

P(s ′, r |s, a)
[
r + γmax

a′
Q∗(s ′, a′)

]
Solving MDPs:

Value Iteration: Iteratively update value function
Policy Iteration: Alternate between policy evaluation and improvement
Linear Programming: Formulate as optimization problem

Computational Complexity

For finite MDPs with |S| states and |A| actions, solving requires O(|S|2|A|) operations per
iteration.

26 / 30

Key Takeaways

Markov Decision Processes provide a mathematical framework for sequential decision
making under uncertainty.

Essential Components:
1 States - Complete description of the situation
2 Actions - Available choices for the agent
3 Rewards - Immediate feedback signal
4 Transition Probabilities - Environment dynamics

Key Concepts:

Markov Property: Future depends only on present state

Policies: Strategies for action selection

Value Functions: Measure goodness of states/actions

Bellman Equations: Recursive relationships for optimal solutions
27 / 30

Applications and Extensions

Real Applications:

Autonomous vehicles

Game playing (AlphaGo, Chess)

Resource management

Medical treatment planning

Financial trading

Robotics control

Extensions:

Partially Observable MDPs (POMDPs)

Continuous state/action spaces

Multi-agent MDPs

Hierarchical MDPs

Constrained MDPs

Infinite horizon problems

Connection to Machine Learning

MDPs form the foundation of Reinforcement Learning, where agents learn optimal policies
through interaction with the environment.

28 / 30

Next Steps

Building on MDPs:

1 Dynamic Programming: Value iteration, policy iteration
2 Monte Carlo Methods: Learning from episodes
3 Temporal Difference Learning: Q-learning, SARSA
4 Function Approximation: Handling large state spaces
5 Deep Reinforcement Learning: Neural networks + RL

Practical Considerations:

State space design

Reward engineering

Exploration vs exploitation

Sample efficiency

Computational complexity
29 / 30

Thank You!

Questions & Discussion

® Ü

sali85@student.gsu.edu

30 / 30

	Introduction to MDPs
	The Markov Property
	Finite MDPs
	States
	Actions
	Rewards
	Transition Probabilities
	Putting It All Together
	Policies and Value Functions
	Optimal Policies
	Summary

