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Markov Decision Process (MDP) - Quick Review

MDP Definition
An MDP is a 5-tuple: (S, A,P,R,v)

@ S: Set of states

o A: Set of actions

@ P: Transition probability function
@ R: Reward function

@ : Discount factor

Key Properties

o Markov Property: Future depends only on current state
o Sequential Decision Making: Actions affect future states

@ Stochastic Outcomes: Uncertainty in transitions and rewards




The Agent-Environment Interaction

At

st-‘rla Rt+1
St State: 51_-

Interaction Sequence

At each time step t:
O Agent observes state S;
Q Agent selects action A;

© Environment returns reward R;11 and next state S;11
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What is Return?

Definition: Return
The return G; is the total accumulated reward from time step t onwards:

Gt =Rei+ Repa+ Reps+-+- =Y Repinn (1)
k=0

Problem: Infinite Horizons
For infinite horizons, this sum may diverge!

Example: Simple Chain

Consider states S; — Sy — S3 with rewards +1,+1,+1, ...
Without discounting: Gp =1+1+1+--- =0
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Types of Tasks

Episodic Tasks Continuing Tasks

@ Have natural ending (terminal states) @ No natural ending

o Examples: Games, robot navigation @ Examples: Process control, trading

o Return: G; = ,(T;Otfl Retk+1 @ Need discounting to ensure convergence
o T = terminal time step o Return: Gy = > 2 0 Y Reskr1

Discounting allows us to handle both episodic and continuing tasks in a unified framework! I
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The Discount Factor ~

Discounted Return

o0
G = ZVth+k+1 = Rer1 +YReya + 7P Reya + - - (2)
k=0

e v €[0,1] is the discount factor

@ 7 = 0: Only immediate reward matters (myopic)

@ v = 1: All future rewards equally important

@ 7 € (0,1): Gradually decreasing importance of future rewards

Mathematical Convergence
If |[Re| < Rmax for all t, then:

> R
|Gt‘ S ;7kRmax - 1 Tai;




Why Discount?

Mathematical Reasons Practical Reasons
@ Ensures convergence @ Uncertainty: Future is uncertain
@ Makes problems well-defined o Time preference: Immediate rewards
@ Enables recursive relationships preferred

@ Modeling: Approximates real-world
Computational Reasons scenarios

@ Finite value functions

Real-world Example
$100 today vs $100 in 10 years?

@ Tractable optimization

|

@ Stable algorithms
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Recursive Property of Return

The return satisfies a recursive relationship:
Gt = Rey1 + YRe2 + VP Regs + - - (3)
= Rep1 +Y(Res2 + YRey3z + ) (4)
= Rey1+7Gepa (5)

This is Fundamental!

This recursive property is the foundation for:
@ Bellman equations
@ Dynamic programming
@ Temporal difference learning |

9/24



Discount Factor Impact Visualization
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Observation: Higher ~ values give more weight to future rewards.
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State Value Function

Definition: State Value Function
The state value function v, (s) under policy 7 is the expected return starting from state s:

Ve(s) = Ex[Ge|S; = s]

where E.[-] denotes expectation under policy .

Expanded Form

vr(s) = E,

o
ZW’th—i-k-s-l S; = 5]
k=0

Interpretation

vr(s) tells us "how good” it is to be in state s when following policy 7.

] |
[
[
)
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Action Value Function

Definition: Action Value Function

The action value function g(s, a) under policy 7 is the expected return starting from state
s, taking action a:

g=(s,a) = E;[G¢|S: = s, Ar = ]

Expanded Form

o
k
> Y Reprra
k=0

q7r(57 a) =Eq

Stzs,At:a]

Interpretation

g (s, a) tells us "how good"” it is to take action a in state s when following policy 7.
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Relationship Between Value Functions

From Action Values to State Values

Vﬂ'(s) = Zﬂ-(a|5)q7r(s7 a)

a

The value of a state is the expected value over all possible actions, weighted by the policy.

From State Values to Action Values

gr(s,a) = Zp ‘|, a)[r(s,a,s) + yvir(s)]

| \

The value of an action is the expected immediate reward plus the discounted value of the next

state.
QELLE: u\‘to
S a S

v
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The Bellman Equation for v,

Bellman Equation

The state value function satisfies the Bellman equation:

Vi (s) = Ex[Rey1 + vGr11]St = 9] (6)
= Ex[Rer1 + 7va(St11)|S: = 9] (7)

Expanded Form

va(s) =D m(als) Y p(s'ls, a)lr(s, a,s") +va(s)]

a s/

This is a system of linear equations! For n states, we have n equations in n unknowns. I
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The Bellman Equation for g,

Bellman Equation for Action Values

The action value function satisfies:

Gr(s,a) = E[Re11 + 7Ge11|S: = 5, Ar = a] (8)
=D p(s'Is, a)lr(s,a,8") + Yva(s')] (9)

Alternative Form

qTr(57 a) = Z p(S/’S, a) [r(s? a, 5/) + VZﬂ(al‘sl)qﬂ(slv a,)]

These equations can be written compactly using matrices, enabling efficient computation. I

= et
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Example: Simple Grid World

@ 3 x 3 grid world
@ Goal: Reach bottom-right (+10 reward)

S1]S2|s3 @ Actions: Up, Down, Left, Right
S4 1S5 | S6 @ Other transitions: -1 reward
57|58 |+10 0 =0 )

Uniform random policy: 7(als) = 0.25 for all a \

What are the value functions v, (s) for each state?

16 /24



Grid World Solution Process

Bellman Equation Setup

For each state s, we have:

va(s) = Y _m(als) Y p(s'ls, a)lr(s, a,s") + va(s')]

v

Example for State S5 (center)

Ve(S5) = 0.25 x [(—1 + 0.9v;(52)) + (—1 + 0.9v;(58)) (10)
+ (=1 +0.9v(54)) + (1 + 0.9v,(S6))] (11)

Solution Method

@ Set up system of 8 linear equations

@ Solve using matrix methods or iteration

7

@ Terminal state: v,(Goal) =0




Computing Value Functions: Methods

Direct Solution [terative Methods

Solve linear system: Value Iteration:
v=rtoPy Vs (s) = Y w(als) Y p(s'ls, )l +7vi(s))]
v=(1-~P) ° i
- . 2 - .
Complexity: O(n®) for n states J Complexity: O(n®) per iteration )

Practical Considerations

@ Direct solution for small state spaces (n < 1000)

o lterative methods for large state spaces

@ Convergence guaranteed for v < 1
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Optimal Value Functions

Optimal State Value Function
v*(s) = max vg(s)

The maximum value achievable in state s over all possible policies.

Optimal Action Value Function

| \

q*(s,a) = max gx(s, a)
s

The maximum value achievable by taking action a in state s and then following the optimal
policy.

Fundamental Relationship

| \

v*(s) = maxq*(s, a)
a




Bellman Optimality Equations

For State Values

vi(s) = méaxz p(s'|s,a)[r(s,a,s’) +yv*(s")]

1%}
~

For Action Values

q'(s,a) = Z p(SI‘S, a)r(s, a, 5,) +7 maél‘x q*(sla a,)]

s/

Key Difference

These are nonlinear equations due to the max operator!

Solution Methods
@ Value lteration

@ Policy Iteration
@ Linear Programming
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Key Takeaways

Return and Discounting

@ Return G; measures total future reward
o Discount factor v balances immediate vs. future rewards

@ Enables unified treatment of episodic and continuing tasks

v

Value Functions

® v,(s): Expected return from state s under policy 7

@ gr(s,a): Expected return from state-action pair (s, a)
@ Satisfy recursive Bellman equations

v

Optimal Value Functions

o v*(s) and g*(s, a): Best possible performance

o Satisfy Bellman optimality equations

o Foundation for finding optimal policies .
o
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Mathematical Summary

Core Equations

G =) Y Rerur1 (12)

k=0
Vr(s) = Ex[G¢|St = 9] (13)
gr(s,a) = E;[G:|S: = s, A = 4] (14)
ve(s) =Y m(als) > p(s'ls, a)lr + vve(s')] (15)
vi(s) = mgxz p(s'ls, a)[r +yv*(s')] (16)
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Coming Up

o Dynamic Programming: Value and Policy lteration algorithms
@ Monte Carlo Methods: Learning from experience

o Temporal Difference Learning: Combining DP and MC

o

Function Approximation: Handling large state spaces

Homework /Practice

Solve small grid world problems by hand
Implement value iteration algorithm

Experiment with different discount factors

Analyze convergence properties
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Questions?

© Discussion and Clarifications

Contact: sali85@student.gsu.edu
Course Materials:
https://sarwanpasha.github.io/Courses/Reinforcement_Learning/int_RL.html
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