Markov Decision Processes

Return, Discounting, and Value Functions

Instructor: Sarwan Ali

Department of Computer Science Georgia State University

understanding Returns and Value Functions

Today's Learning Journey

- MDP Foundations Review
- 2 The Return: Measuring Long-term Reward
- 3 Discounting: Balancing Present and Future
- Value Functions: Evaluating States and Actions
- Examples and Applications
- **6** Optimal Value Functions
- Summary and Next Steps

Markov Decision Process (MDP) - Quick Review

MDP Definition

An MDP is a 5-tuple: $\langle \mathcal{S}, \mathcal{A}, \mathcal{P}, \mathcal{R}, \gamma \rangle$

- \circ \mathcal{S} : Set of states
- A: Set of actions
- \bullet \mathcal{P} : Transition probability function
- R: Reward function
- γ : Discount factor

Key Properties

- Markov Property: Future depends only on current state
- Sequential Decision Making: Actions affect future states
- Stochastic Outcomes: Uncertainty in transitions and rewards

The Agent-Environment Interaction

Interaction Sequence

At each time step t:

- Agent observes state S_t
- 2 Agent selects action A_t
- **3** Environment returns reward R_{t+1} and next state S_{t+1}

What is Return?

Definition: Return

The **return** G_t is the total accumulated reward from time step t onwards:

$$G_t = R_{t+1} + R_{t+2} + R_{t+3} + \dots = \sum_{k=0}^{\infty} R_{t+k+1}$$
 (1)

Problem: Infinite Horizons

For infinite horizons, this sum may diverge!

Example: Simple Chain

Consider states $S_1 \to S_2 \to S_3$ with rewards $+1, +1, +1, \dots$

Without discounting: $G_0 = 1 + 1 + 1 + \cdots = \infty$

Types of Tasks

Episodic Tasks

- Have natural ending (terminal states)
- Examples: Games, robot navigation
- Return: $G_t = \sum_{k=0}^{T-t-1} R_{t+k+1}$
- \bullet T = terminal time step

Continuing Tasks

- No natural ending
- Examples: Process control, trading
- Need discounting to ensure convergence
- Return: $G_t = \sum_{k=0}^{\infty} \gamma^k R_{t+k+1}$

Key Insight

Discounting allows us to handle both episodic and continuing tasks in a unified framework!

The Discount Factor γ

Discounted Return

$$G_t = \sum_{k=0}^{\infty} \gamma^k R_{t+k+1} = R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + \cdots$$

- $\gamma \in [0,1]$ is the **discount factor**
- ullet $\gamma=$ 0: Only immediate reward matters (myopic)
- $\gamma = 1$: All future rewards equally important • $\gamma \in (0,1)$: Gradually decreasing importance of future rewards

Mathematical Convergence

If $|R_t| \leq R_{\text{max}}$ for all t, then:

$$|\mathcal{G}_t| \leq \sum_{k=0}^{\infty} \gamma^k R_{\mathsf{max}} = rac{R_{\mathsf{max}}}{1-\gamma}$$

Why Discount?

Mathematical Reasons

- Ensures convergence
- Makes problems well-defined
- Enables recursive relationships

Computational Reasons

- Finite value functions
- Tractable optimization
- Stable algorithms

Practical Reasons

- Uncertainty: Future is uncertain
- **Time preference**: Immediate rewards preferred
- Modeling: Approximates real-world scenarios

Real-world Example

\$100 today vs \$100 in 10 years?

Recursive Property of Return

Key Insight

The return satisfies a recursive relationship:

$$G_t = R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + \cdots$$

$$= R_{t+1} + \gamma (R_{t+2} + \gamma R_{t+3} + \cdots)$$

$$= R_{t+1} + \gamma$$

$$=R_{t+1}+\gamma G_{t+1}$$

(3)

This is Fundamental!

This recursive property is the foundation for:

- Bellman equations
- Dynamic programming
- Temporal difference learning

Discount Factor Impact Visualization

Observation: Higher γ values give more weight to future rewards.

State Value Function

Definition: State Value Function

The state value function $v_{\pi}(s)$ under policy π is the expected return starting from state s:

$$v_{\pi}(s) = \mathbb{E}_{\pi}[G_t|S_t = s]$$

where $\mathbb{E}_{\pi}[\cdot]$ denotes expectation under policy π .

Expanded Form

$$v_{\pi}(s) = \mathbb{E}_{\pi}\left[\sum_{k=0}^{\infty} \gamma^k R_{t+k+1} \Big| S_t = s
ight]$$

Interpretation

 $v_{\pi}(s)$ tells us "how good" it is to be in state s when following policy π .

Action Value Function

Definition: Action Value Function

The action value function $q_{\pi}(s, a)$ under policy π is the expected return starting from state s, taking action a:

$$q_{\pi}(s,a) = \mathbb{E}_{\pi}[G_t|S_t = s, A_t = a]$$

Expanded Form

$$q_{\pi}(s,a) = \mathbb{E}_{\pi}\left[\sum_{k=0}^{\infty} \gamma^k R_{t+k+1} \Big| S_t = s, A_t = a
ight]$$

Interpretation

 $q_{\pi}(s,a)$ tells us "how good" it is to take action a in state s when following policy π .

Relationship Between Value Functions

From Action Values to State Values

$$v_{\pi}(s) = \sum_{a} \pi(a|s)q_{\pi}(s,a)$$

The value of a state is the expected value over all possible actions, weighted by the policy.

From State Values to Action Values

$$q_{\pi}(s,a) = \sum_{s'} p(s'|s,a)[r(s,a,s') + \gamma v_{\pi}(s')]$$

The value of an action is the expected immediate reward plus the discounted value of the next state.

The Bellman Equation for v_{π}

Bellman Equation

The state value function satisfies the Bellman equation:

$$v_{\pi}(s) = \mathbb{E}_{\pi}[R_{t+1} + \gamma G_{t+1} | S_t = s]$$

$$= \mathbb{E}_{\pi}[R_{t+1} + \gamma v_{\pi}(S_{t+1}) | S_t = s]$$
(6)
$$(7)$$

Expanded Form

$$v_{\pi}(s) = \sum_{a} \pi(a|s) \sum_{s'} p(s'|s,a) [r(s,a,s') + \gamma v_{\pi}(s')]$$

Key Insight

This is a system of linear equations! For n states, we have n equations in n unknowns.

The Bellman Equation for q_π

Bellman Equation for Action Values

The action value function satisfies:

$$q_{\pi}(s, a) = \mathbb{E}[R_{t+1} + \gamma G_{t+1} | S_t = s, A_t = a]$$

$$= \sum_{s} p(s'|s, a)[r(s, a, s') + \gamma v_{\pi}(s')]$$
(9)

Alternative Form

$$q_{\pi}(s,a) = \sum_{s'} p(s'|s,a) \left[r(s,a,s') + \gamma \sum_{a'} \pi(a'|s') q_{\pi}(s',a')
ight]$$

Matrix Form

These equations can be written compactly using matrices, enabling efficient computation.

Example: Simple Grid World

S1	S2	S 3
S4	S5	S6
S7	S8	+10

Setup

- 3 × 3 grid world
- ullet Goal: Reach bottom-right (+10 reward)
- Actions: Up, Down, Left, Right
- Other transitions: -1 reward
- $\gamma = 0.9$

Policy

Uniform random policy: $\pi(a|s) = 0.25$ for all a

Question

What are the value functions $v_{\pi}(s)$ for each state?

Grid World Solution Process

Bellman Equation Setup

For each state s, we have:

$$v_{\pi}(s) = \sum_{a} \pi(a|s) \sum_{s'} p(s'|s,a) [r(s,a,s') + \gamma v_{\pi}(s')]$$

 $v_{\pi}(S5) = 0.25 \times [(-1 + 0.9v_{\pi}(S2)) + (-1 + 0.9v_{\pi}(S8))]$

 $+(-1+0.9v_{\pi}(S4))+(-1+0.9v_{\pi}(S6))$

Example for State S5 (center)

- Set up system of 8 linear equations
- Solve using matrix methods or iteration
 - Solve using matrix methods or iteration

17 / 24

(10)

Computing Value Functions: Methods

Direct Solution

Solve linear system:

$$\mathbf{v} = \mathbf{r} + \gamma \mathbf{P} \mathbf{v}$$

$$\mathbf{v} = (\mathbf{I} - \gamma \mathbf{P})^{-1} \mathbf{r}$$

Complexity: $O(n^3)$ for n states

Iterative Methods

Value Iteration:

$$v_{k+1}(s) = \sum_{a} \pi(a|s) \sum_{s'} p(s'|s,a)[r + \gamma v_k(s')]$$

Complexity: $O(n^2)$ per iteration

Practical Considerations

- Direct solution for small state spaces (n < 1000)
- Iterative methods for large state spaces
- ullet Convergence guaranteed for $\gamma < 1$

Optimal Value Functions

Optimal State Value Function

$$v^*(s) = \max_{\pi} v_{\pi}(s)$$

The maximum value achievable in state s over all possible policies.

Optimal Action Value Function

$$q^*(s,a) = \max_{\pi} q_{\pi}(s,a)$$

The maximum value achievable by taking action a in state s and then following the optimal policy.

Fundamental Relationship

$$v^*(s) = \max_a q^*(s,a)$$

Bellman Optimality Equations

For State Values

$$v^*(s) = \max_{a} \sum_{s'} p(s'|s,a)[r(s,a,s') + \gamma v^*(s')]$$

For Action Values

$$q^*(s, a) = \sum_{s'} p(s'|s, a)[r(s, a, s') + \gamma \max_{a'} q^*(s', a')]$$

Key Difference

These are nonlinear equations due to the max operator!

Solution Methods

- Value Iteration
- Policy Iteration
- Linear Programming

Key Takeaways

Return and Discounting

- \bullet Return G_t measures total future reward
- \bullet Discount factor γ balances immediate vs. future rewards
- Enables unified treatment of episodic and continuing tasks

Value Functions

- $v_{\pi}(s)$: Expected return from state s under policy π
- $q_{\pi}(s,a)$: Expected return from state-action pair (s,a)
- Satisfy recursive Bellman equations

Optimal Value Functions

- $v^*(s)$ and $q^*(s, a)$: Best possible performance
- Satisfy Bellman optimality equations
- Foundation for finding optimal policies

Mathematical Summary

Core Equations

$$G_t = \sum_{k=0}^{\infty} \gamma^k R_{t+k+1}$$

$$\nu_{\pi}(s) = \mathbb{E}_{\pi}[G_t | S_t = s]$$

$$(12)$$

$$egin{aligned} v_\pi(s) &= \mathbb{E}_\pi[G_t|S_t=s] \ q_\pi(s,a) &= \mathbb{E}_\pi[G_t|S_t=s,A_t=a] \end{aligned}$$

$$u_{\pi}(s, a) = \mathbb{E}_{\pi}[G_t|S_t = s, A_t = a]$$

$$v_{\pi}(s) = \sum_{a} \pi(a|s) \sum_{s'} p(s'|s, a)[r + \gamma v_{\pi}(s')]$$

$$v^*(s) = \max_{a} \sum_{r} p(s'|s,a)[r + \gamma v^*(s')]$$

(14)

(15)

(16)

Next Steps

Coming Up

- Dynamic Programming: Value and Policy Iteration algorithms
- Monte Carlo Methods: Learning from experience
- Temporal Difference Learning: Combining DP and MC
- Function Approximation: Handling large state spaces

Homework/Practice

- Solve small grid world problems by hand
- Implement value iteration algorithm
- Experiment with different discount factors
- Analyze convergence properties

Questions?

② Discussion and Clarifications

Contact: sali85@student.gsu.edu

(#) Course Materials:

https://sarwanpasha.github.io/Courses/Reinforcement_Learning/int_RL.html