
Markov Decision Processes
Return, Discounting, and Value Functions

Instructor: Sarwan Ali

Department of Computer Science
Georgia State University

Æ Understanding Returns and Value Functions ¢

1 / 24

Today’s Learning Journey

1 MDP Foundations Review

2 The Return: Measuring Long-term Reward

3 Discounting: Balancing Present and Future

4 Value Functions: Evaluating States and Actions

5 Examples and Applications

6 Optimal Value Functions

7 Summary and Next Steps

2 / 24

Markov Decision Process (MDP) - Quick Review

MDP Definition

An MDP is a 5-tuple: ⟨S,A,P,R, γ⟩

S: Set of states
A: Set of actions

P: Transition probability function

R: Reward function

γ: Discount factor

Key Properties

Markov Property: Future depends only on current state

Sequential Decision Making: Actions affect future states

Stochastic Outcomes: Uncertainty in transitions and rewards

3 / 24

The Agent-Environment Interaction

Agent Environment

At

St+1,Rt+1

St State: St

Interaction Sequence

At each time step t:

1 Agent observes state St
2 Agent selects action At

3 Environment returns reward Rt+1 and next state St+1

4 / 24

What is Return?

Definition: Return

The return Gt is the total accumulated reward from time step t onwards:

Gt = Rt+1 + Rt+2 + Rt+3 + · · · =
∞∑
k=0

Rt+k+1 (1)

Problem: Infinite Horizons

For infinite horizons, this sum may diverge!

Example: Simple Chain

Consider states S1 → S2 → S3 with rewards +1,+1,+1, . . .
Without discounting: G0 = 1 + 1 + 1 + · · · = ∞

5 / 24

Types of Tasks

Episodic Tasks

Have natural ending (terminal states)

Examples: Games, robot navigation

Return: Gt =
∑T−t−1

k=0 Rt+k+1

T = terminal time step

Continuing Tasks

No natural ending

Examples: Process control, trading

Need discounting to ensure convergence

Return: Gt =
∑∞

k=0 γ
kRt+k+1

Key Insight

Discounting allows us to handle both episodic and continuing tasks in a unified framework!

6 / 24

The Discount Factor γ

Discounted Return

Gt =
∞∑
k=0

γkRt+k+1 = Rt+1 + γRt+2 + γ2Rt+3 + · · · (2)

γ ∈ [0, 1] is the discount factor
γ = 0: Only immediate reward matters (myopic)
γ = 1: All future rewards equally important
γ ∈ (0, 1): Gradually decreasing importance of future rewards

Mathematical Convergence

If |Rt | ≤ Rmax for all t, then:

|Gt | ≤
∞∑
k=0

γkRmax =
Rmax

1− γ
7 / 24

Why Discount?

Mathematical Reasons

Ensures convergence

Makes problems well-defined

Enables recursive relationships

Computational Reasons

Finite value functions

Tractable optimization

Stable algorithms

Practical Reasons

Uncertainty: Future is uncertain

Time preference: Immediate rewards
preferred

Modeling: Approximates real-world
scenarios

Real-world Example

$100 today vs $100 in 10 years?

8 / 24

Recursive Property of Return

Key Insight

The return satisfies a recursive relationship:

Gt = Rt+1 + γRt+2 + γ2Rt+3 + · · · (3)

= Rt+1 + γ(Rt+2 + γRt+3 + · · ·) (4)

= Rt+1 + γGt+1 (5)

This is Fundamental!

This recursive property is the foundation for:

Bellman equations

Dynamic programming

Temporal difference learning

9 / 24

Discount Factor Impact Visualization

0 1 2 3 4 5

0

0.5

1

Time Step

D
is
co
u
n
t
W
ei
gh

t

γ = 0.9
γ = 0.5
γ = 0.99

Observation: Higher γ values give more weight to future rewards.

10 / 24

State Value Function

Definition: State Value Function

The state value function vπ(s) under policy π is the expected return starting from state s:

vπ(s) = Eπ[Gt |St = s]

where Eπ[·] denotes expectation under policy π.

Expanded Form

vπ(s) = Eπ

[∞∑
k=0

γkRt+k+1

∣∣∣St = s

]

Interpretation

vπ(s) tells us ”how good” it is to be in state s when following policy π.

11 / 24

Action Value Function

Definition: Action Value Function

The action value function qπ(s, a) under policy π is the expected return starting from state
s, taking action a:

qπ(s, a) = Eπ[Gt |St = s,At = a]

Expanded Form

qπ(s, a) = Eπ

[∞∑
k=0

γkRt+k+1

∣∣∣St = s,At = a

]

Interpretation

qπ(s, a) tells us ”how good” it is to take action a in state s when following policy π.

12 / 24

Relationship Between Value Functions

From Action Values to State Values

vπ(s) =
∑
a

π(a|s)qπ(s, a)

The value of a state is the expected value over all possible actions, weighted by the policy.

From State Values to Action Values

qπ(s, a) =
∑
s′

p(s ′|s, a)[r(s, a, s ′) + γvπ(s
′)]

The value of an action is the expected immediate reward plus the discounted value of the next
state.

s a s ′
π(a|s) p(s ′|s, a)

r(s, a, s ′)
13 / 24

The Bellman Equation for vπ

Bellman Equation

The state value function satisfies the Bellman equation:

vπ(s) = Eπ[Rt+1 + γGt+1|St = s] (6)

= Eπ[Rt+1 + γvπ(St+1)|St = s] (7)

Expanded Form

vπ(s) =
∑
a

π(a|s)
∑
s′

p(s ′|s, a)[r(s, a, s ′) + γvπ(s
′)]

Key Insight

This is a system of linear equations! For n states, we have n equations in n unknowns.

14 / 24

The Bellman Equation for qπ

Bellman Equation for Action Values

The action value function satisfies:

qπ(s, a) = E[Rt+1 + γGt+1|St = s,At = a] (8)

=
∑
s′

p(s ′|s, a)[r(s, a, s ′) + γvπ(s
′)] (9)

Alternative Form

qπ(s, a) =
∑
s′

p(s ′|s, a)

[
r(s, a, s ′) + γ

∑
a′

π(a′|s ′)qπ(s ′, a′)

]

Matrix Form

These equations can be written compactly using matrices, enabling efficient computation.

15 / 24

Example: Simple Grid World

S1 S2 S3

S4 S5 S6

S7 S8 +10

Setup

3× 3 grid world

Goal: Reach bottom-right (+10 reward)

Actions: Up, Down, Left, Right

Other transitions: -1 reward

γ = 0.9

Policy

Uniform random policy: π(a|s) = 0.25 for all a

Question

What are the value functions vπ(s) for each state?

16 / 24

Grid World Solution Process

Bellman Equation Setup

For each state s, we have:

vπ(s) =
∑
a

π(a|s)
∑
s′

p(s ′|s, a)[r(s, a, s ′) + γvπ(s
′)]

Example for State S5 (center)

vπ(S5) = 0.25× [(−1 + 0.9vπ(S2)) + (−1 + 0.9vπ(S8)) (10)

+ (−1 + 0.9vπ(S4)) + (−1 + 0.9vπ(S6))] (11)

Solution Method
Set up system of 8 linear equations

Solve using matrix methods or iteration

Terminal state: vπ(Goal) = 0
17 / 24

Computing Value Functions: Methods

Direct Solution

Solve linear system:

v = r + γPv

v = (I− γP)−1r

Complexity: O(n3) for n states

Iterative Methods

Value Iteration:

vk+1(s) =
∑
a

π(a|s)
∑
s′

p(s ′|s, a)[r + γvk(s
′)]

Complexity: O(n2) per iteration

Practical Considerations

Direct solution for small state spaces (n < 1000)

Iterative methods for large state spaces

Convergence guaranteed for γ < 1

18 / 24

Optimal Value Functions

Optimal State Value Function

v∗(s) = max
π

vπ(s)

The maximum value achievable in state s over all possible policies.

Optimal Action Value Function

q∗(s, a) = max
π

qπ(s, a)

The maximum value achievable by taking action a in state s and then following the optimal
policy.

Fundamental Relationship

v∗(s) = max
a

q∗(s, a)

19 / 24

Bellman Optimality Equations

For State Values

v∗(s) = max
a

∑
s′

p(s ′|s, a)[r(s, a, s ′) + γv∗(s ′)]

For Action Values

q∗(s, a) =
∑
s′

p(s ′|s, a)[r(s, a, s ′) + γmax
a′

q∗(s ′, a′)]

Key Difference

These are nonlinear equations due to the max operator!

Solution Methods
Value Iteration

Policy Iteration

Linear Programming

20 / 24

Key Takeaways

Return and Discounting

Return Gt measures total future reward

Discount factor γ balances immediate vs. future rewards

Enables unified treatment of episodic and continuing tasks

Value Functions

vπ(s): Expected return from state s under policy π

qπ(s, a): Expected return from state-action pair (s, a)

Satisfy recursive Bellman equations

Optimal Value Functions

v∗(s) and q∗(s, a): Best possible performance

Satisfy Bellman optimality equations

Foundation for finding optimal policies
21 / 24

Mathematical Summary

Core Equations

Gt =
∞∑
k=0

γkRt+k+1 (12)

vπ(s) = Eπ[Gt |St = s] (13)

qπ(s, a) = Eπ[Gt |St = s,At = a] (14)

vπ(s) =
∑
a

π(a|s)
∑
s′

p(s ′|s, a)[r + γvπ(s
′)] (15)

v∗(s) = max
a

∑
s′

p(s ′|s, a)[r + γv∗(s ′)] (16)

22 / 24

Next Steps

Coming Up

Dynamic Programming: Value and Policy Iteration algorithms

Monte Carlo Methods: Learning from experience

Temporal Difference Learning: Combining DP and MC

Function Approximation: Handling large state spaces

Homework/Practice

Solve small grid world problems by hand

Implement value iteration algorithm

Experiment with different discount factors

Analyze convergence properties

23 / 24

Questions?

® Discussion and Clarifications

Contact: sali85@student.gsu.edu
� Course Materials:

https://sarwanpasha.github.io/Courses/Reinforcement_Learning/int_RL.html

24 / 24

https://sarwanpasha.github.io/Courses/Reinforcement_Learning/int_RL.html

	MDP Foundations Review
	The Return: Measuring Long-term Reward
	Discounting: Balancing Present and Future
	Value Functions: Evaluating States and Actions
	Examples and Applications
	Optimal Value Functions
	Summary and Next Steps

