
Markov Decision Processes
Bellman Equations for State and Action Values

Sarwan Ali

Department of Computer Science
Georgia State University

Æ Understanding Markov Decision Processes ¢

1 / 23



Today’s Learning Journey

1 Introduction to Markov Decision Processes

2 Policies and Value Functions

3 Bellman Equations

4 Optimal Policies and Bellman Optimality Equations

5 Examples and Applications

6 Properties and Convergence

7 Extensions and Advanced Topics

8 Summary

2 / 23



What is a Markov Decision Process?

Definition

A Markov Decision Process (MDP) is a mathematical framework for modeling
decision-making problems where outcomes are partly random and partly under the control of a
decision maker.

Key Components:

States (S): Environment configurations

Actions (A): Available choices

Transitions (P): State change probabilities

Rewards (R): Immediate feedback

Discount Factor (γ): Future value
weighting

st st+1
at
rt+1

3 / 23



MDP Formal Definition

An MDP is formally defined as a 5-tuple: ⟨S ,A,P,R, γ⟩

S : Set of states (1)

A : Set of actions (2)

P : S × A× S → [0, 1] (Transition probabilities) (3)

R : S × A× S → R (Reward function) (4)

γ : Discount factor, γ ∈ [0, 1] (5)

Markov Property

P(St+1 = s ′|St = s,At = a,St−1,At−1, . . .) = P(St+1 = s ′|St = s,At = a)

”The future depends only on the present, not the past”

4 / 23



Policy Definition

Policy

A policy π is a mapping from states to actions (or action probabilities):

π : S → A or π : S × A→ [0, 1]

Types of Policies:

Deterministic: π(s) = a

Stochastic: π(a|s) = P(At = a|St = s)

Stationary: Time-independent

Non-stationary: Time-dependent

s

a1

a2

a3

π(a1|s)

π(a2|s)

π(a3|s)

5 / 23



Value Functions: State Value

State Value Function

The state value function V π(s) represents the expected cumulative reward starting from
state s and following policy π:

V π(s) = Eπ

[ ∞∑
t=0

γtRt+1|S0 = s

]

Interpretation:

Expected return from state s

Depends on the policy π

Discounted future rewards

γ controls importance of future vs.
immediate rewards

s

V π(s) Future rewards

Immediate reward

Discounted

6 / 23



Value Functions: Action Value

Action Value Function (Q-function)

The action value function Qπ(s, a) represents the expected cumulative reward starting from
state s, taking action a, then following policy π:

Qπ(s, a) = Eπ

[ ∞∑
t=0

γtRt+1|S0 = s,A0 = a

]

Relationship with State Value:

V π(s) =
∑
a∈A

π(a|s)Qπ(s, a)

Alternative form:

Qπ(s, a) = E[Rt+1+γV π(St+1)|St = s,At = a]

s a s ′
choose r , π

Qπ(s, a)

7 / 23



The Bellman Principle

Principle of Optimality (Richard Bellman, 1957)

”An optimal policy has the property that whatever the initial state and initial decision are, the
remaining decisions must constitute an optimal policy with regard to the state resulting from
the first decision.”

s0 s1 s2 · · ·
a0, r1 a1, r2

Must be optimal from here

This principle leads to recursive relationships called Bellman equations.

8 / 23



Bellman Equation for State Values

Bellman Equation for V π(s)

V π(s) =
∑
a∈A

π(a|s)
∑
s′∈S

P(s ′|s, a)
[
R(s, a, s ′) + γV π(s ′)

]

Intuitive Breakdown:

V π(s) = Eπ[Rt+1 + γV π(St+1)|St = s] (6)

=
∑
a

π(a|s)E[Rt+1 + γV π(St+1)|St = s,At = a] (7)

=
∑
a

π(a|s)
∑
s′

P(s ′|s, a)[R(s, a, s ′) + γV π(s ′)] (8)

Value of current state = Expected immediate reward + Discounted future value

9 / 23



Bellman Equation: Visual Representation

s

a1

a2

a3

s ′1

s ′2

s ′1

s ′3

s ′2

s ′3

π(a1|s)

π(a2|s)

π(a3|s)

P(s′1|s, a1)

P(s′2|s, a1)

P(s′1|s, a2)

P(s′3|s, a2)

P(s′2|s, a3)

P(s′3|s, a3)

V π(s)

Each path contributes: π(a|s)× P(s ′|s, a)× [R(s, a, s ′) + γV π(s ′)]
10 / 23



Bellman Equation for Action Values

Bellman Equation for Qπ(s, a)

Qπ(s, a) =
∑
s′∈S

P(s ′|s, a)

[
R(s, a, s ′) + γ

∑
a′∈A

π(a′|s ′)Qπ(s ′, a′)

]

Alternative compact form:

Qπ(s, a) =
∑
s′∈S

P(s ′|s, a)
[
R(s, a, s ′) + γV π(s ′)

]
Key Relationships:

V π(s) =
∑
a∈A

π(a|s)Qπ(s, a) (9)

Qπ(s, a) = E[Rt+1 + γV π(St+1)|St = s,At = a] (10)

11 / 23



Optimal Value Functions

Optimal State Value Function

V ∗(s) = max
π

V π(s) ∀s ∈ S

Optimal Action Value Function

Q∗(s, a) = max
π

Qπ(s, a) ∀s ∈ S , a ∈ A

Relationship:
V ∗(s) = max

a∈A
Q∗(s, a)

Optimal Policy

π∗(s) = argmax
a∈A

Q∗(s, a)

An optimal policy π∗ satisfies V π∗
(s) = V ∗(s) for all s ∈ S .

12 / 23



Bellman Optimality Equations

Bellman Optimality Equation for V ∗

V ∗(s) = max
a∈A

∑
s′∈S

P(s ′|s, a)
[
R(s, a, s ′) + γV ∗(s ′)

]
Bellman Optimality Equation for Q∗

Q∗(s, a) =
∑
s′∈S

P(s ′|s, a)
[
R(s, a, s ′) + γmax

a′∈A
Q∗(s ′, a′)

]

Key Differences from Policy Evaluation:

Expectation over policy → Maximization over actions

Non-linear system of equations

Unique solution under standard conditions

13 / 23



Bellman Optimality: Visual Representation

s

a1

a2

a3

s ′1

s ′2
MAX

P(s′1|s, a1)

P(s′2|s, a1)

V ∗(s) maxa

The optimal value is achieved by selecting the best action at each state.

14 / 23



Example: Grid World MDP

S s1 s2 +1

s3 Wall s4 -1

s5 s6 s7 s8

MDP Components:

States: Grid positions

Actions: {↑, ↓,←,→}
Rewards:

Goal: +1
Pit: -1
Step: -0.04

Transitions:
80% intended
10% each side

γ = 0.9

Bellman Equation Example

For state s1:
V ∗(s1) = max

a

∑
s′

P(s ′|s1, a)[R(s1, a, s ′) + 0.9 · V ∗(s ′)]

15 / 23



Grid World: Value Iteration Results

Optimal Values V ∗(s):

0.81 0.87 0.92 +1.0

0.76 0.66 -1.0

0.70 0.66 0.61 0.39

Optimal Policy π∗(s):

GOAL

PIT

The optimal policy shows the best action to take from each state to maximize expected return.

16 / 23



Solving Methods for Bellman Equations

Policy Evaluation:

Input: Policy π

Output: V π(s)

Method: Iterative solution

Vk+1(s) =
∑
a

π(a|s)
∑
s′

P(s ′|s, a)[R(s, a, s ′)+γVk(s
′)]

Value Iteration:

Output: V ∗(s) and π∗

Method: Dynamic programming

Vk+1(s) = maxa
∑

s′ P(s
′|s, a)[R(s, a, s ′)+γVk(s

′)]

Policy Iteration:
1 Policy Evaluation: Compute V π

2 Policy Improvement: π′(s) =
argmaxa

∑
s′ P(s

′|s, a)[R(s, a, s ′) + γV π(s ′)]

3 Repeat until convergence

Evaluate Improve

V π
π′

17 / 23



Properties of Bellman Equations

Existence and Uniqueness

Under standard conditions (finite MDP, γ < 1):

The Bellman equations have a unique solution

There exists at least one optimal policy

All optimal policies share the same value functions V ∗ and Q∗

Contraction Property:

Bellman operator is a contraction

Convergence rate: γk

Guaranteed convergence for γ < 1

∥TV − TU∥∞ ≤ γ∥V − U∥∞

Computational Complexity:

Value Iteration: O(|S |2|A|) per iteration
Policy Iteration: O(|S |3 + |S |2|A|)
Policy Evaluation: O(|S |3)

Challenge: Curse of dimensionality for large
state spaces

18 / 23



Convergence Analysis

Value Iteration Convergence

For value iteration with discount factor γ < 1:

∥Vk − V ∗∥∞ ≤ γk∥V0 − V ∗∥∞
Stopping Criteria:

∥Vk+1 − Vk∥∞ < ε
1− γ

2γ

This guarantees: ∥Vk − V ∗∥∞ < ε
Policy Iteration:

Finite convergence

Each iteration improves policy

Monotonic improvement

0 2 4 6 8 10
0

0.2
0.4
0.6
0.8
1

Iteration k

E
rr
or
∥V

k
−

V
∗ ∥

γ = 0.9
γ = 0.5

Exponential convergence rate

19 / 23



Extensions of Basic MDPs

Partially Observable MDPs (POMDPs):

Agent doesn’t observe full state

Observation model needed

Belief state representation

Much more complex to solve

Continuous MDPs:

Continuous state/action spaces

Function approximation needed

Bellman equations become functional
equations

Multi-Agent MDPs:

Multiple decision makers

Game-theoretic considerations

Nash equilibria

Hierarchical MDPs:

Temporal abstraction

Options and semi-MDPs

Multi-level planning

Factored MDPs:

Structured state representation

Exploit independence

Scalability improvements
20 / 23



Modern Applications

Reinforcement Learning:

Q-Learning approximates Q∗

Policy gradient methods

Actor-critic algorithms

Deep reinforcement learning

Operations Research:

Inventory management

Resource allocation

Maintenance scheduling

Financial portfolio optimization

Robotics:

Path planning

Motion control

Task scheduling

Human-robot interaction

Game AI:

Strategic decision making

Resource management games

Real-time strategy

Board game AI

Key Insight: MDPs provide the theoretical foundation for sequential decision making

21 / 23



Key Takeaways

Markov Decision Processes

Framework: Mathematical model for sequential decision making under uncertainty

Components: States, actions, transitions, rewards, discount factor

Goal: Find optimal policy to maximize expected cumulative reward

Bellman Equations

Principle: Optimal decisions have optimal sub-decisions

Policy Evaluation: V π(s) =
∑

a π(a|s)
∑

s′ P(s
′|s, a)[R + γV π(s ′)]

Optimality: V ∗(s) = maxa
∑

s′ P(s
′|s, a)[R + γV ∗(s ′)]

Solution Methods

Value Iteration: Direct optimization of value function

Policy Iteration: Alternating evaluation and improvement

Convergence: Guaranteed under standard conditions
22 / 23



Next Steps and Further Reading

Recommended Next Topics:

Reinforcement Learning: Model-free approaches (Q-learning, SARSA)

Function Approximation: Handling large state spaces

Policy Gradient Methods: Direct policy optimization

Deep RL: Neural network approximation

® Questions?

Thank you for your attention!

# sali85@student.gsu.edu

23 / 23


	Introduction to Markov Decision Processes
	Policies and Value Functions
	Bellman Equations
	Optimal Policies and Bellman Optimality Equations
	Examples and Applications
	Properties and Convergence
	Extensions and Advanced Topics
	Summary

