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What Makes a Policy Optimal?

Key Question

How do we determine the best way to act in an MDP?

Intuitive Understanding:

Maximize long-term rewards

Balance immediate vs. future gains

Handle uncertainty optimally
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Challenge

Need mathematical framework to define and find optimal policies!
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State Value Function V π(s)

Definition

The state value function V π(s) is the expected return when starting from state s and
following policy π:

V π(s) = Eπ

[ ∞∑
t=0

γtRt+1 | S0 = s

]

Key Components:

Eπ: Expectation under policy π

γt : Discount factor for time t

Rt+1: Reward at time t + 1

S0 = s: Starting state condition
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Action Value Function Qπ(s, a)

Definition

The action value function Qπ(s, a) is the expected return when starting from state s, taking action a,
and then following policy π: Qπ(s, a) = Eπ [

∑∞
t=0 γ

tRt+1 | S0 = s,A0 = a]

Relationship between V π and Qπ

V π(s) =
∑
a

π(a|s)Qπ(s, a)

Qπ(s, a) =
∑
s′

p(s ′|s, a)
[
r(s, a, s ′) + γV π(s ′)

]
Intuition

Qπ(s, a) tells us ”how good” it is to take action a in state s under policy π.
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Bellman Equation for V π

Theorem (Bellman Equation for State Value Function)

For any policy π and state s: V π(s) =
∑

a π(a|s)
∑

s′ p(s
′|s, a) [r(s, a, s ′) + γV π(s ′)]

Breakdown:

V π(s) = Eπ[Rt+1 + γV π(St+1)|St = s] (1)

=
∑
a

π(a|s)E[Rt+1 + γV π(St+1)|St = s,At = a]

(2)

=
∑
a

π(a|s)Qπ(s, a) (3)
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Key Insight

The value of a state equals the expected immediate reward plus the discounted value of the next state.

6 / 21



Optimal State Value Function V ∗(s)

Definition

The optimal state value function V ∗(s) is:

V ∗(s) = max
π

V π(s) for all s ∈ S

Properties:

Unique for each MDP

Independent of initial policy

Represents best possible performance

Satisfies Bellman optimality equation
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Interpretation

V ∗(s) is the maximum expected return achievable from state s.
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Optimal Action Value Function Q∗(s, a)

Definition

The optimal action value function Q∗(s, a) is:
Q∗(s, a) = maxπ Q

π(s, a) for all s ∈ S, a ∈ A

Relationship with V ∗

V ∗(s) = max
a

Q∗(s, a)

Q∗(s, a) =
∑
s′

p(s ′|s, a)
[
r(s, a, s ′) + γV ∗(s ′)

]
Key Insight

Q∗(s, a) gives us the expected return of taking action a
in state s and then acting optimally thereafter.

s

a1

a2

Q∗(s, a1)

Q∗(s, a2)

High value

Low value

8 / 21



Bellman Optimality Equation

Theorem (Bellman Optimality Equation for V ∗)

V ∗(s) = max
a

∑
s′

p(s ′|s, a) [r(s, a, s ′) + γV ∗(s ′)]

Theorem (Bellman Optimality Equation for Q∗)

Q∗(s, a) =
∑
s′

p(s ′|s, a)
[
r(s, a, s ′) + γmax

a′
Q∗(s ′, a′)

]

System of Equations
For an MDP with n states, we have n nonlinear equations with n unknowns.

If we can solve this system, we find V∗

From V∗, we can derive the optimal policy

Solution exists and is unique

Challenge
These are nonlinear equations due to the max operator!
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Definition of Optimal Policy

Definition

A policy π∗ is optimal if:
V π∗

(s) = V ∗(s) for all s ∈ S

Theorem (Existence of Optimal Policy)

For any finite MDP, there exists at least one optimal policy

All optimal policies share the same optimal value function V ∗

All optimal policies share the same optimal action value function Q∗

Deterministic Optimal Policy

There always exists an optimal policy that is deterministic and stationary:

π∗(s) = argmax
a

Q∗(s, a) = argmax
a

∑
s′

p(s ′|s, a)
[
r(s, a, s ′) + γV ∗(s ′)

]
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Policy Ordering

Definition (Policy Ordering)

For two policies π and π′, we say π ≥ π′ if: V π(s) ≥ V π′
(s) for all s ∈ S

Theorem (Optimal Policy Theorem)

There exists an optimal policy π∗ such that π∗ ≥ π for all policies π.

Implications:

Policies can be ranked

Optimal policy dominates all others

May be multiple optimal policies

All optimal policies are equivalent

π1

π2 π3

π∗

Policy Space

Optimal
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Extracting Optimal Policy from V ∗

Method 1: One-step Lookahead

Given V ∗, the optimal policy is: π∗(s) =
argmaxa

∑
s′ p(s

′|s, a) [r(s, a, s ′) + γV ∗(s ′)]

Method 2: Using Q∗

Given Q∗, the optimal policy is:
π∗(s) = argmaxa Q

∗(s, a)

Example: Grid World

V ∗ = 8.8 V ∗ = 9.2 V ∗ = 10

V ∗ = 8.4 V ∗ = 8.8 V ∗ = 9.2

V ∗ = 8 V ∗ = 8.4 V ∗ = 8.8
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Key Properties of Optimal Functions

Uniqueness

V ∗ is unique for each MDP

Q∗ is unique for each MDP

Multiple optimal policies may exist, but they all achieve the same value

Consistency

If π∗ is optimal, then:

V π∗
(s) = V ∗(s) (4)

Qπ∗
(s, a) = Q∗(s, a) (5)

Principle of Optimality

An optimal policy has the property that whatever the initial state and initial decision are, the remaining
decisions must constitute an optimal policy with regard to the state resulting from the first decision.
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Computational Complexity

Challenges

Finding optimal policies is computationally intensive:

Bellman optimality equations are nonlinear

Direct solution requires solving system of equations

Curse of dimensionality: state space grows exponentially

Solution Methods

Exact Methods:

Value Iteration

Policy Iteration

Linear Programming

Approximate Methods:

Function Approximation

Monte Carlo Methods

Temporal Difference Learning

Time Complexity

For finite MDPs: O(|S|2 · |A|) per iteration for most algorithms.
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Example: Simple Grid World

Setup:

3× 3 grid

Goal at top-right (+10 reward)

Pit at bottom-left (-10 reward)

Step cost: -1

γ = 0.9

Actions: Up, Down, Left, Right
Transition: 80% intended direction, 10% each
perpendicular direction

G

+10

P

-10

Optimal Policy
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Value Iteration Convergence

Value Iteration Algorithm:

1 Initialize V0(s) = 0 for all s

2 For k = 0, 1, 2, . . .:

Vk+1(s) = max
a

∑
s′

p(s ′|s, a)[r(s, a, s ′) + γVk(s
′)]

3 Stop when ∥Vk+1 − Vk∥ < ϵ
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Theorem (Convergence of Value Iteration)

Value iteration converges to V ∗ for finite MDPs with γ < 1.

Vk → V ∗ as k → ∞
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Real-World Applications

Robotics
Path planning: V∗(s) represents expected cost-to-go from current position

Robot navigation in uncertain environments, Manipulation tasks with stochastic outcomes

Finance
Portfolio optimization: V∗(s) = maximum expected return from wealth state s

Algorithmic trading: optimal buy/sell decisions, Risk management and hedging strategies

Game AI
Chess, Go: V∗(s) = value of board position s

Video games: NPC behavior optimization, Multi-agent competitive environments

Healthcare
Treatment planning: optimal therapy sequences

Drug dosage optimization, Resource allocation in hospitals
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Key Takeaways

Optimal Value Functions

V ∗(s): Maximum expected return from state s

Q∗(s, a): Maximum expected return from taking action a in state s

Both satisfy Bellman optimality equations. Unique solutions exist for finite MDPs

Optimal Policies

Always exist for finite MDPs. Can be deterministic and stationary

Extracted via: π∗(s) = argmaxa Q
∗(s, a). May be multiple optimal policies with same value

Bellman Optimality Equations

V ∗(s) = max
a

∑
s′

p(s ′|s, a)[r(s, a, s ′) + γV ∗(s ′)] (6)

Q∗(s, a) =
∑
s′

p(s ′|s, a)[r(s, a, s ′) + γmax
a′

Q∗(s ′, a′)] (7)
18 / 21



Computational Challenges & Solutions

The Challenge

Bellman optimality equations are nonlinear

Curse of dimensionality: |S| and |A| can be huge

Direct analytical solution often impossible

Solution Approaches

Dynamic Programming:

Value Iteration

Policy Iteration

Guaranteed convergence

Exact for finite MDPs

Approximate Methods:

Reinforcement Learning

Function Approximation

Monte Carlo sampling

Neural networks (Deep RL)

Next Topic Preview

We’ll explore Dynamic Programming algorithms that solve these equations iteratively!
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Practice Problems

Problem 1: Simple MDP

Consider a 2-state MDP with states {s1, s2} and actions {a1, a2}:
From s1: a1 goes to s2 (reward +1), a2 stays in s1 (reward 0)

From s2: both actions return to s1 (reward +2)

γ = 0.8

Find: V ∗(s1), V
∗(s2), and π∗

Problem 2: Policy Comparison

For the grid world example, compare these policies:

π1: Always go right

π2: Always go towards goal (shortest path)

π∗: Optimal policy

Calculate: V π1(s), V π2(s), V ∗(s) for center state
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Questions?

Thank You!

# sali85@student.gsu.edu
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