Supervised Learning - Linear Regression

Simple and Multiple Regression, Cost Functions, Gradient Descent

Sarwan Ali

Department of Computer Science
Georgia State University

2 Linear Regression Fundamentals [22

1/33

Today's Learning Journey

@ Introduction to Linear Regression
e Simple Linear Regression

© Muiltiple Linear Regression

@ Cost Functions

© Gradient Descent

@ Analytical Solution

@ Feature Scaling and Normalization
© Model Evaluation and Performance Metrics
© Assumptions and Limitations

@ Practical Implementation

@ Summary and Next Steps

2/33

What is Linear Regression?

Definition: Linear regression is a fundamental
supervised learning algorithm that models the
relationship between a dependent variable and one or ‘
more independent variables using a linear equation. 10} .

Key Characteristics:

@ Supervised Learning - Uses labeled training data
@ Regression - Predicts continuous values X
@ Linear - Assumes linear relationship

@ Parametric - Has fixed number of parameters

3/33

Applications of Linear Regression

4 Real Estate (@) Healthcare
@ House price prediction o Drug dosage optimization
@ Property valuation @ Disease progression
L4 Finance lee Manufacturing
@ Stock price analysis @ Quality control
@ Risk assessment @ Production optimization

4/33

Simple Linear Regression

Mathematical Model:

y =00+ pPix+e
¥y = Bo + Bix

Where:
e y = dependent variable (target)
e x = independent variable (feature)
e [y = y-intercept (bias)
o 31 = slope (weight)
@ ¢ = error term

o y = predicted value

(1) __1oof| e Data Points /
2 = — 9y =40+47x
L 80 ')
3
wn °
£ 60
it
40 - !
0 5

Hours Studied (x)

5/33

Geometric Interpretation

10

pe)

Bo (y-intercept)

o N B~ O @ ©

The goal is to find the line that best fits the data by minimizing the distance between
predicted and actual values.

6/33

Multiple Linear Regression

Extension to Multiple Features:

y=Bo+Bixi + Baxa+ ...+ Bpxn t+ € (3)
Y = 0Bo+ Bix1+ Boxo + ...+ Bnxn (4)
Matrix Form:
y=XB+e (5)
y=XB (6)

Where:
e y = target vector (m x 1)
o X = feature matrix (m x (n+ 1)) with bias column
o 3 = parameter vector ((n+1) x 1)
@ m = number of samples, n = number of features

7/33

Multiple Regression Example

House Price Prediction:

Size (sa) Aee

T

House Price

Model:
Price = Bp + (1 - Size + B2 - Bedrooms + (33 - Location + 34 - Age

8/33

Matrix Representation

Training Data Structure:

L ol el [
1 x X cee Xp y B1
X = : 1 2 .. . y= : B = :
1 x{m) Xz(m) e x,(,m) (m) Bn

Key Points:
@ First column of X is all 1's (bias term)
@ Each row represents one training example
@ Each column (except first) represents one feature

@ (3 contains all parameters to be learned

9/33

Why Do We Need Cost Functions?

Purpose: Measure how well our model fits the training
data

Goal: Find parameters 3 that minimize the cost

Intuition:
@ Good fit = Low cost
@ Poor fit = High cost

@ Cost function guides learning

10

Cost
(6]

Parameter Value

10/33

Mean Squared Error (MSE)

Most Common Cost Function for Linear Regression:

)= 51 S (ha(x) — yOY 7
i=1

_ % SO - y)2 (8)
i=1

Matrix Form: 1
J(B) = 5-(XB - y)"(XB ~y)
Properties:
@ Always non-negative
e Convex function (single global minimum)
o Differentiable everywhere
@ Penalizes large errors more than small ones

11/33

Understanding MSE Geometrically

10 a

N B Oy
T
|

ol
—
N
w
~
o1
o I

MSE = % x (Sum of squared vertical distances)
The factor % simplifies derivative calculations.

12/33

Other Cost Functions

Cost Function Formula Properties
Mean Absolute Error % Sy — 9] Robust to outliers

Root Mean Squared Error \/# S (v — 9(0)2 | Same units as target

12 <6
Huber Loss Mixed L1/L2 2€ Lo el <
Sle[=356 le| >0

Why MSE is Popular:
e Mathematically convenient (differentiable)
@ Convex optimization landscape

o Statistical interpretation (MLE under Gaussian noise)

13/33

What is Gradient Descent?

Definition: An iterative optimization algorithm to find the minimum of a cost function.
Key Idea:

@ Start with random parameters
e Compute gradient (slope)
@ Move in opposite direction

@ Repeat until convergence

Analogy: Rolling ball down a hill

14/33

Gradient Descent Algorithm

Update Rule:
Bj = Bj — Q%J(ﬂ)
For Linear Regression:
7 0) = 5 2 0ls) -y) ©)
Simultaneous Update:
Bo = Po —a% i(hﬂ(x(i)) -y (10)
i=1
5= fj—a S (hax) — y)t (1)
i=1

Where « is the learning rate.
15/33

Learning Rate «

Too Large: May overshoot minimum Just Right: Efficient convergence
4r T = = T =
z o) : S 2 1
B 0k = B (S -
0 2 4 0 2 4
8 8
Too Small: Slow convergence Choosing a:
AT ‘ i e Start with 0.01
X L N
= 3 o Try: 0.001, 0.01, 0.1, 1
0o 2 4

o Plot J(3) vs iterations
@ Use adaptive methods

16/33

Gradient Descent Variants

Type Description Pros/Cons
Batch GD Uses entire dataset
per update
Stochastic GD | Uses one sample
per update
Mini-batch GD | Uses small batches
(e.g., 32-256 samples)

Mini-batch Update:

1 , N (i
Bj =B — g S (h(xD) — yD)xD
ieB

where B is a mini-batch of training examples.

17/33

Convergence Criteria

When to Stop Gradient Descent?
@ Cost Function Convergence:

(B —J(B) V] < e

@ Parameter Convergence:
181 — gLV < e

© Gradient Magnitude:
IVJ(B)] < e

@ Maximum lterations: Fixed number of iterations (e.g., 1000)
Typical threshold: ¢ = 107® or 1078

18/33

Normal Equation

Closed-form Solution: For linear regression, we can solve analytically!

Derivation:
B) = 5(XB) (X3 ~y) (12)
0 11,y o\
B —X (XB-y)=0 (13)
X™X3=XTy (14)
B=(XTX)"'XTy (15)

Normal Equation:

B=(XTX)"'X"y

19/33

Gradient Descent vs Normal Equation

Aspect Gradient Descent Normal Equation
Speed Iterative, may be slow Direct computation
Scalability Works with large n Slow for large n (O(n®))
Complexity O(kn’m) o(n®)

Applicability Works for all algorithms Linear regression only
Matrix Inverse | Not needed Requires (XTX)~!
Feature Scaling | Recommended Not necessary

Rule of Thumb:
e n < 10*: Use Normal Equation
e n > 10* Use Gradient Descent
o Non-invertible X" X: Use Gradient Descent

20/33

Why Feature Scaling Matters

Problem: Different scales can hurt 2| . ath i
convergence
Example:

@ House size: 500-5000 sq ft

@ Number of bedrooms: 1-5

o Age: 0-100 years
Without Scaling:
@ Gradient descent oscillates | | | | |

@ Slow convergence -4 =2 0 2 4

@ Numerical instability b1

21/33

Feature Scaling Techniques

1. Min-Max Normalization (Scaling to [0,1]):

X = Xmin
Xscaled = ——————
Xmax — Xmin

2. Standardization (Z-score normalization):

X— K
Xscaled =
o
3. Robust Scaling:
x — median
Xscaled = A7 A~

Q75 — Q25
Method When to Use Properties
Min-Max Known bounds Preserves relationships
Standardization | Gaussian distribution | Mean=0, Std=1
Robust Outliers present Less sensitive to outliers

22/33

Evaluation Metrics for Regression

1. Mean Squared Error (MSE):
1 m
MSE = — (1) — pi)y2
- ;1 " =5")
2. Root Mean Squared Error (RMSE):

RMSE = | 23" () — g2
3. Mean Absolute Error (MAE):
1 < .)
MAE = —~ Z () —)
i=1
4. R-squared (Coefficient of Determination):

m (i) _ ()2
R2—1 SSres —1_ sy)

B SStot B Z£1(y(i) -)7)2 23/33

Understanding R-squared

Interpretation:

o R? =1: Perfect fit 6
@ R? =0: No better than mean Tg 4 6
e R? < 0: Worse than mean 'S 5
e 0 < R? < 1: Partial explanation o 0
Example:
e R? =0.8: Model explains 80% of variance Actual

@ R? =0.3: Model explains 30% of variance

24/33

Train-Validation-Test Split

Training Set (60%) Validation Set (20%) | Test Set (20%)

J | l

Learn Parameters Tune Hyperparameters Final Evaluation
B8 a, regularization Unbiased estimate

Why Three Sets?
o Training: Learn model parameters
o Validation: Select best hyperparameters

o Test: Evaluate final model performance

25/33

Linear Regression Assumptions

Linearity: Relationship between X and vy is linear
Independence: Observations are independent
Homoscedasticity: Constant variance of residuals
Normality: Residuals are normally distributed

No Multicollinearity: Features are not highly correlated

o=

0.2
0 [-
-0.2

Residuals

Fitted Values

26/33

Checking Assumptions

Diagnostic Plots:

s 02 T T 05F 7
2 ol ;f 04 - .
& —02b . ! = o 03b s
0 2 4 6 > 5 4
1. Residuals vs Fitted , Fitted 3. Scale-Location Plot Fitted
<2 [h v T Iy T
e L | T 0.2f .
<Eu 0 / '5 0 L i
LA 1 | L] 4] .
2 0 2 o —02L - | |
9 o | 01 02 03
- H eoretica
- Q-Q Plot (Normality) 4. Leverage Plot Leverage

27/33

Common Problems and Solutions

Problem Symptoms Solutions
Non-linearity Curved residual patterns | Polynomial features, transforms
Heteroscedasticity | Fan-shaped residuals Log transform, weighted regression
Multicollinearity High VIF values Remove features, PCA, regularization
Outliers High leverage points Robust regression, outlier removal
Non-normality Skewed Q-Q plot Transform target variable
Variance Inflation Factor (VIF):
1
VIFF = ——

Rule of thumb: VIF > 10 indicates multicollinearity

28/33

Python Implementation

Using Scikit-learn:

from sklearn.linear_.model import LinearRegression

from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler

from sklearn.metrics import mean_squared_error, r2_score
import numpy as np

Prepare data
X_train, X_test, y_train, y_test = train_test_split(
X, y, test_size=0.2, random_state=42)

Feature scaling

scaler = StandardScaler ()
X_train_scaled = scaler.fit_transform (X_train)
X_test_scaled = scaler.transform(X_test)

Train model

model = LinearRegression ()

model. fit (X_train_scaled , y_train)

Make predictions

y-pred = model.predict(X_test_scaled)

Evaluate

mse = mean_squared_error(y_test, y_pred)
r2 = r2_score(y-test, y._pred)

print (f"MSE: -{mse:.2f}")

print (f"R"2:-{r2:.2f}")

print (f”" Coefficients:-{model.coef_}")

print (f”"Intercept:-{model.intercept_:.2f}")

209

Manual Implementation

Gradient Descent from Scratch:

import numpy as np

def gradient_descent(X, y, learning_rate=0.01, num_iterations=1000):
m, n = X.shape

Initialize parameters
theta = np.zeros(n)
cost_history = []

i in range(num_iterations):
Forward pass
h =X @ theta

for

Compute cost
cost = (1/(2*m)) * np.sum((h — y)*x2)
cost_history.append(cost)

Compute gradients
gradients = (1/m) * X.T @ (h — y)

Update parameters
theta = theta — learning_rate * gradients
Check convergence
if i > 0 and abs(cost_history[i—1] — cost) < le—8:
break
return theta, cost_history
Usage
theta, costs = gradient_descent(X_train, y_train)

30

Key Takeaways

What We Learned:
@ Linear Regression models linear relationships between features and targets
@ Cost Functions (MSE) measure model performance
© Gradient Descent iteratively optimizes parameters
© Normal Equation provides analytical solution
© Feature Scaling improves convergence
O Evaluation Metrics assess model quality
@ Assumptions must be checked for validity
When to Use Linear Regression:
@ Linear relationship between features and target
@ Interpretability is important
@ Baseline model for comparison

@ Small to medium-sized datasets
31/33

Limitations and Extensions

Limitations:
@ Assumes linear relationships
@ Sensitive to outliers
o May overfit with many features
@ Requires assumption validation
Extensions and Improvements:
o Polynomial Regression: Non-linear relationships
o Regularization: Ridge, Lasso, Elastic Net
o Robust Regression: Handle outliers
o Generalized Linear Models: Different distributions
Next Topics:
@ Regularization techniques
o Classification algorithms
@ Model selection and validation

32/33

Practice Problems

Try These Exercises:
@ Implement gradient descent for simple linear regression
@ Compare Normal Equation vs Gradient Descent on different dataset sizes
© Analyze the effect of learning rate on convergence
@ Create diagnostic plots for assumption checking
© Build a house price prediction model using multiple features
Datasets to Practice:
@ Boston Housing Dataset
o California Housing Dataset
o Auto MPG Dataset

Thank You!

© Questions?

33/33

	Introduction to Linear Regression
	Simple Linear Regression
	Multiple Linear Regression
	Cost Functions
	Gradient Descent
	Analytical Solution
	Feature Scaling and Normalization
	Model Evaluation and Performance Metrics
	Assumptions and Limitations
	Practical Implementation
	Summary and Next Steps

