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Today's Learning Journey

@ Introduction to Linear Regression
e Simple Linear Regression

© Muiltiple Linear Regression

@ Cost Functions

© Gradient Descent

@ Analytical Solution

@ Feature Scaling and Normalization
© Model Evaluation and Performance Metrics
© Assumptions and Limitations

@ Practical Implementation

@ Summary and Next Steps
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What is Linear Regression?

Definition: Linear regression is a fundamental
supervised learning algorithm that models the
relationship between a dependent variable and one or ‘
more independent variables using a linear equation. 10} .

Key Characteristics:

@ Supervised Learning - Uses labeled training data
@ Regression - Predicts continuous values X
@ Linear - Assumes linear relationship

@ Parametric - Has fixed number of parameters
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Applications of Linear Regression

4 Real Estate (@) Healthcare
@ House price prediction o Drug dosage optimization
@ Property valuation @ Disease progression
L4 Finance lee Manufacturing
@ Stock price analysis @ Quality control
@ Risk assessment @ Production optimization
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Simple Linear Regression

Mathematical Model:

y =00+ pPix+e
¥y = Bo + Bix

Where:
e y = dependent variable (target)
e x = independent variable (feature)
e [y = y-intercept (bias)
o 31 = slope (weight)
@ ¢ = error term

o y = predicted value
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Geometric Interpretation
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The goal is to find the line that best fits the data by minimizing the distance between
predicted and actual values.
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Multiple Linear Regression

Extension to Multiple Features:

y=Bo+Bixi + Baxa+ ...+ Bpxn t+ € (3)
Y = 0Bo+ Bix1+ Boxo + ...+ Bnxn (4)
Matrix Form:
y=XB+e (5)
y=XB (6)

Where:
e y = target vector (m x 1)
o X = feature matrix (m x (n+ 1)) with bias column
o 3 = parameter vector ((n+1) x 1)
@ m = number of samples, n = number of features
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Multiple Regression Example

House Price Prediction:

Size (sa ) Aee

T

House Price

Model:
Price = Bp + (1 - Size + B2 - Bedrooms + (33 - Location + 34 - Age
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Matrix Representation

Training Data Structure:

L ol el [
1 x X cee Xp y B1
X = : 1 2 .. . y= : B = :
1 x{m) Xz(m) e x,(,m) (m) Bn

Key Points:
@ First column of X is all 1's (bias term)
@ Each row represents one training example
@ Each column (except first) represents one feature

@ (3 contains all parameters to be learned
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Why Do We Need Cost Functions?

Purpose: Measure how well our model fits the training
data

Goal: Find parameters 3 that minimize the cost

Intuition:
@ Good fit = Low cost
@ Poor fit = High cost

@ Cost function guides learning

10
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Mean Squared Error (MSE)

Most Common Cost Function for Linear Regression:

)= 51 S (ha(x) — yOY 7
i=1

_ % SO - y )2 (8)
i=1

Matrix Form: 1
J(B) = 5-(XB - y)"(XB ~y)
Properties:
@ Always non-negative
e Convex function (single global minimum)
o Differentiable everywhere
@ Penalizes large errors more than small ones
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Understanding MSE Geometrically
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MSE = % x (Sum of squared vertical distances)
The factor % simplifies derivative calculations.
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Other Cost Functions

Cost Function Formula Properties
Mean Absolute Error % Sy — 9] Robust to outliers

Root Mean Squared Error \/# S (v — 9(0)2 | Same units as target

12 <6
Huber Loss Mixed L1/L2 2€ Lo el <
Sle[ =356 le| >0

Why MSE is Popular:
e Mathematically convenient (differentiable)
@ Convex optimization landscape

o Statistical interpretation (MLE under Gaussian noise)
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What is Gradient Descent?

Definition: An iterative optimization algorithm to find the minimum of a cost function.
Key Idea:

@ Start with random parameters
e Compute gradient (slope)
@ Move in opposite direction

@ Repeat until convergence

Analogy: Rolling ball down a hill
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Gradient Descent Algorithm

Update Rule:
Bj = Bj — Q%J(ﬂ)
For Linear Regression:
7 0) = 5 2 0ls) -y ) ©)
Simultaneous Update:
Bo = Po —a% i(hﬂ(x(i)) -y (10)
i=1
5= fj—a S (hax) — y )t (1)
i=1

Where « is the learning rate.
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Learning Rate «

Too Large: May overshoot minimum Just Right: Efficient convergence
4r T = = T =
z o) : S 2 1
B 0k = B (S -
0 2 4 0 2 4
8 8
Too Small: Slow convergence Choosing a:
AT ‘ i e Start with 0.01
X L N
= 3 o Try: 0.001, 0.01, 0.1, 1
0o 2 4

o Plot J(3) vs iterations
@ Use adaptive methods
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Gradient Descent Variants

Type Description Pros/Cons
Batch GD Uses entire dataset
per update
Stochastic GD | Uses one sample
per update
Mini-batch GD | Uses small batches
(e.g., 32-256 samples)

Mini-batch Update:

1 , N (i
Bj =B — g S (h(xD) — yD)xD
ieB

where B is a mini-batch of training examples.
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Convergence Criteria

When to Stop Gradient Descent?
@ Cost Function Convergence:

(B —J(B) V] < e

@ Parameter Convergence:
181 — gLV < e

© Gradient Magnitude:
IVJ(B)] < e

@ Maximum lterations: Fixed number of iterations (e.g., 1000)
Typical threshold: ¢ = 107® or 1078
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Normal Equation

Closed-form Solution: For linear regression, we can solve analytically!

Derivation:
B) = 5(XB ) (X3 ~y) (12)
0 11,y o\
B —X (XB-y)=0 (13)
X™X3=XTy (14)
B=(XTX)"'XTy (15)

Normal Equation:

B=(XTX)"'X"y
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Gradient Descent vs Normal Equation

Aspect Gradient Descent Normal Equation
Speed Iterative, may be slow Direct computation
Scalability Works with large n Slow for large n (O(n®))
Complexity O(kn’m) o(n®)

Applicability Works for all algorithms Linear regression only
Matrix Inverse | Not needed Requires (XTX)~!
Feature Scaling | Recommended Not necessary

Rule of Thumb:
e n < 10*: Use Normal Equation
e n > 10* Use Gradient Descent
o Non-invertible X" X: Use Gradient Descent
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Why Feature Scaling Matters

Problem: Different scales can hurt 2| . ath i
convergence
Example:

@ House size: 500-5000 sq ft

@ Number of bedrooms: 1-5

o Age: 0-100 years
Without Scaling:
@ Gradient descent oscillates | | | | |

@ Slow convergence -4 =2 0 2 4

@ Numerical instability b1

21/33



Feature Scaling Techniques

1. Min-Max Normalization (Scaling to [0,1]):

X = Xmin
Xscaled = ——————
Xmax — Xmin

2. Standardization (Z-score normalization):

X— K
Xscaled =
o
3. Robust Scaling:
x — median
Xscaled = A7 A~

Q75 — Q25
Method When to Use Properties
Min-Max Known bounds Preserves relationships
Standardization | Gaussian distribution | Mean=0, Std=1
Robust Outliers present Less sensitive to outliers
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Evaluation Metrics for Regression

1. Mean Squared Error (MSE):
1 m
MSE = — (1) — pi)y2
- ;1 " =5")
2. Root Mean Squared Error (RMSE):

RMSE = | 23" () — g2
3. Mean Absolute Error (MAE):
1 < . )
MAE = —~ Z () — )
i=1
4. R-squared (Coefficient of Determination):

m (i) _ ()2
R2—1 SSres —1_ sy )

B SStot B Z£1(y(i) - )7)2 23/33




Understanding R-squared

Interpretation:

o R? =1: Perfect fit 6
@ R? =0: No better than mean Tg 4 6
e R? < 0: Worse than mean 'S 5
e 0 < R? < 1: Partial explanation o 0
Example:
e R? =0.8: Model explains 80% of variance Actual

@ R? =0.3: Model explains 30% of variance
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Train-Validation-Test Split

Training Set (60%) Validation Set (20%) | Test Set (20%)

J | l

Learn Parameters Tune Hyperparameters Final Evaluation
B8 a, regularization Unbiased estimate

Why Three Sets?
o Training: Learn model parameters
o Validation: Select best hyperparameters

o Test: Evaluate final model performance
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Linear Regression Assumptions

Linearity: Relationship between X and vy is linear
Independence: Observations are independent
Homoscedasticity: Constant variance of residuals
Normality: Residuals are normally distributed

No Multicollinearity: Features are not highly correlated

o=

0.2
0 [ -
-0.2

Residuals

Fitted Values

26/33



Checking Assumptions

Diagnostic Plots:
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Common Problems and Solutions

Problem Symptoms Solutions
Non-linearity Curved residual patterns | Polynomial features, transforms
Heteroscedasticity | Fan-shaped residuals Log transform, weighted regression
Multicollinearity High VIF values Remove features, PCA, regularization
Outliers High leverage points Robust regression, outlier removal
Non-normality Skewed Q-Q plot Transform target variable
Variance Inflation Factor (VIF):
1
VIFF = ——

Rule of thumb: VIF > 10 indicates multicollinearity
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Python Implementation

Using Scikit-learn:

from sklearn.linear_.model import LinearRegression

from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler

from sklearn.metrics import mean_squared_error, r2_score
import numpy as np

# Prepare data
X_train, X_test, y_train, y_test = train_test_split(
X, y, test_size=0.2, random_state=42)

# Feature scaling

scaler = StandardScaler ()
X_train_scaled = scaler.fit_transform (X_train)
X_test_scaled = scaler.transform(X_test)

# Train model

model = LinearRegression ()

model. fit (X_train_scaled , y_train)

# Make predictions

y-pred = model.predict(X_test_scaled)

# Evaluate

mse = mean_squared_error(y_test, y_pred)
r2 = r2_score(y-test, y._pred)

print (f"MSE: -{mse:.2f}")

print (f"R"2:-{r2:.2f}")

print (f”" Coefficients:-{model.coef_}")

print (f”"Intercept:-{model.intercept_:.2f}")
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Manual Implementation

Gradient Descent from Scratch:

import numpy as np

def gradient_descent(X, y, learning_rate=0.01, num_iterations=1000):
m, n = X.shape

# Initialize parameters
theta = np.zeros(n)
cost_history = []

i in range(num_iterations):
# Forward pass
h =X @ theta

for

# Compute cost
cost = (1/(2*m)) * np.sum((h — y)*x2)
cost_history.append(cost)

# Compute gradients
gradients = (1/m) * X.T @ (h — y)

# Update parameters
theta = theta — learning_rate * gradients
# Check convergence
if i > 0 and abs(cost_history[i—1] — cost) < le—8:
break
return theta, cost_history
# Usage
theta, costs = gradient_descent(X_train, y_train)
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Key Takeaways

What We Learned:
@ Linear Regression models linear relationships between features and targets
@ Cost Functions (MSE) measure model performance
© Gradient Descent iteratively optimizes parameters
© Normal Equation provides analytical solution
© Feature Scaling improves convergence
O Evaluation Metrics assess model quality
@ Assumptions must be checked for validity
When to Use Linear Regression:
@ Linear relationship between features and target
@ Interpretability is important
@ Baseline model for comparison

@ Small to medium-sized datasets
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Limitations and Extensions

Limitations:
@ Assumes linear relationships
@ Sensitive to outliers
o May overfit with many features
@ Requires assumption validation
Extensions and Improvements:
o Polynomial Regression: Non-linear relationships
o Regularization: Ridge, Lasso, Elastic Net
o Robust Regression: Handle outliers
o Generalized Linear Models: Different distributions
Next Topics:
@ Regularization techniques
o Classification algorithms
@ Model selection and validation

32/33



Practice Problems

Try These Exercises:
@ Implement gradient descent for simple linear regression
@ Compare Normal Equation vs Gradient Descent on different dataset sizes
© Analyze the effect of learning rate on convergence
@ Create diagnostic plots for assumption checking
© Build a house price prediction model using multiple features
Datasets to Practice:
@ Boston Housing Dataset
o California Housing Dataset
o Auto MPG Dataset

Thank You!

© Questions?
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