Supervised Learning: Logistic Regression

Binary and Multiclass Classification

Sarwan Ali

Department of Computer Science
Georgia State University

2 Classification with Logistic Regression &2

1/22

Today's Learning Journey

o Introduction to Logistic Regression
© The Sigmoid Function

© Binary Classification

@ Maximum Likelihood Estimation
© Muilticlass Classification

@ Practical Considerations

@ Summary

2/22

What is Logistic Regression?

Key Characteristics:
o Classification algorithm (not regression!)
@ Predicts probability of class membership ply = 1lx)
@ Uses for mapping
@ Linear decision boundary

@ Probabilistic interpretation

Why " Logistic”?
@ Uses logistic (sigmoid) function
e Models log-odds (logit) linearly

3/22

Linear vs Logistic Regression

Linear Regression . L. .
g Logistic Regression

e Continuous output .
P o Probability output

o y=pfo+ pix _ 1
. ° p= 1+e—(Bo+B1x)

e Range: (—o0, +00) _

Direct oredict e Range: [0,1]
o Direct prediction

y : @ Probabilistic prediction

p
/1
X 0 O
Linear | Sigmoid

4/22

The Sigmoid Function

Mathematical Definition:

1
o(z) = 14+ e 72

where z = Bg + Bix1 + Boxo + ... + Bnxn

Key Properties:
(0,1)

As z — +o0, 0(z) = 1
e 0(0)=05 As z — —o0, 0(z) — 0
0 o(—z)=1-0(2)

5/22

Why Sigmoid Function?

Advantages of Sigmoid: Decision Rule:

O Probability Interpretation
o Output range [0, 1] represents probabilities y= {1 if o(z) > 0.5
o Natural threshold at 0.5 0 ifo(z) <05

@ Smooth Transition
o Continuous .ar.1d differentiable Since o(z) > 0.5 when z > 0;
o Smooth decision boundary

© Mathematical Properties R 1 ifz>0
o Ni rivative: ¢/(z) = o(z)(1 — o(z =)
° Eniaebliz g:;tdieGnt—sz(asgd ogt(inzi(zatioi() g {0 if z<0

6/22

Binary Logistic Regression Model
Problem Setup:

o Target variable y € {0, 1} (binary)
o Features x = [x1,X2,...,%n]"

o Parameters 3 = [Bo, B1,---,8a] "
Model Equations:

z=Po+ Bix1+ Poxa 4 ...+ Boxn = BTx

(1)
1
ply =1x) = o(2) = 1=)
ply = 0x) =1 ply = 1}x) = 1 - o(2) 3)
Odds and Log-Odds:
Odds = Py =1x) _a(2)

= = eZ
py =0[x) 1-o0(z)
Log-Odds (Logit) = In(Odds) = z = 37x

Geometric Interpretation

Decision Boundary:
@ Linear in feature space
@ Defined by z=10 d
e ATx=0

For 2D case:

Bo + Bix1 + Paxe =0

Xp = —— — ==X Class 0 Deg('ision Boundary

8/22

Maximum Likelihood Principle

Goal: Find parameters 8 that maximize the likelihood of observed data

Given training data: {(x1,y1), (x2,¥2),- s (Xm,¥Ym)}

Likelihood for one sample:
plyilxi, B) = o(BTxi)" - (1 = o(BTx))) ™

Total Likelihood (assuming independence):
:Hp(y,-|x,-, HO‘ ﬁ X 1—0’(ﬁT))l—y,-
i=1

Log-Likelihood:

m

€8) = L(B) = Y |yitn(e(87x) + (1 = yi) In(1 = o(87x:))

i=1

9/22

Cost Function and Optimization

From Log-Likelihood to Cost Function:
We want to maximize log-likelihood ¢(3)
Equivalently, minimize negative log-likelihood:

) =~ t(B) = >~ [n(o(3Tx)) + (1~ v In(1 (57 x7)]
i=1

m

This is the Cross-Entropy Loss!
Gradient of Cost Function:

Vector Form:

where o = [0(B7x1),...,0(8"xm)]"

10/22

Gradient Descent for Logistic Regression

Algorithm:
Q Initialize: 5(©) (usually zeros or small random values)
© Repeat until convergence:

2" = (89)7x (6)

O . (7)
1+e™ %

B = 1) — av y(5) (8)

=89 = ZXT (1) —y) (9)

Key Points:

« is the learning rate

No closed-form solution (unlike linear regression)

Cost function is convex = global minimum guaranteed
Other optimizers: Newton-Raphson, L-BFGS, etc.

11/22

Extending to Multiclass Problems

Problem: What if we have K > 2 classes?

Two Main Approaches:
1. One-vs-Rest (OvR)

o Train K binary classifiers One-vs-Rest
o Class k vs all other classes \&%
vs Rest
@ Prediction: class with highest probability @
O

2. One-vs-One (OvO) N .
o Train (%) binary classifiers ne-vs-ne

o Every pair of classes 8

@ Prediction: majority voting

12/22

Multinomial Logistic Regression (Softmax)

Direct Multiclass Extension:

For K classes, we have K sets of parameters: (1,52, ..., Bk
Softmax Function:
BT x
(v = ki) = —o—
ply = k|x) = ———+
Zszl e X

Properties:

o YK p(y = k|x) = 1 (probabilities sum to 1)
@ Generalizes sigmoid to multiple classes

@ When K = 2, reduces to binary logistic regression
Decision Rule:

y = argmaxp(y = k|x)

13/22

Softmax: Mathematical Details

Cross-Entropy Loss for Multiclass:

For one-hot encoded labels y; = [yi1, yi2, - - - ,y,-K]T:
W B = 23 iy,k In(p(y = KIx;))
M=
Gradient:

o) 1
—— == (ply = kIx;) = yix)xi
B m i—1

Comparison with Binary Case:

Aspect Binary Multiclass
Activation Sigmoid Softmax
Parameters B (one set) b1, -, 0k

Output Single probability | Probability vector

14 /22

Advantages and Disadvantages

Advantages:
° Disadvantages:
@ No assumptions about feature °

distributions Sensitive to outliers

@ Less prone to overfitting Requires large sample sizes

@ No hyperparameters to tune

o
o
o Computationally efficient e Can struggle with complex patterns
o Feature scaling important
o

o Interpretable coefficients May need feature engineering

@ Linear decision boundary
When to Use Logistic Regression:

@ Need probabilistic predictions
Linear separability exists
Interpretability is important
Baseline model for comparison

Large dataset with simple patterns 1522

Implementation Tips

Preprocessing:
o Feature Scaling: Standardize features (mean=0, std=1)
o Handle Missing Values: Imputation or removal
o Categorical Variables: One-hot encoding

Regularization:
o L1 (Lasso): J(B) + A7, 15l

o L2 (Ridge): J(B) + A Y[, B7
o Elastic Net: Combination of L1 and L2

Model Evaluation:
@ Accuracy, Precision, Recall, F1-score
@ ROC curve and AUC
o Confusion matrix
o

Cross-validation
16/22

Key Takeaways

Q Logistic Regression is a classification algorithm that uses the sigmoid function to model
probabilities

©

Sigmoid Function maps any real number to (0, 1), making it perfect for probability
estimation

Maximum Likelihood principle provides a principled way to find optimal parameters
Linear Decision Boundary separates classes in feature space

Multiclass Extension can be achieved through One-vs-Rest, One-vs-One, or Softmax

© 000

Practical Algorithm with good interpretability and efficiency

@ Remember: Logistic regression models the linearly!

17/22

Example: Email Spam Classification

Problem: Classify emails as spam (1) or not spam (0)
Features:

@ x1: Number of exclamation marks
@ xp: Frequency of word "free"

@ x3: Length of email

Model:
z = fBo + Bix1 + Baxo + B3x3
1
P =
(spam) 1462
Interpretation:

@ (51 > 0: More exclamation marks — higher spam probability
@ (> > 0: Word "free" increases spam probability

@ 33 < 0: Longer emails are less likely to be spam

18/22

Logistic Regression vs Other Classifiers

Algorithm Decision Probabilistic Interpretability
Boundary

Logistic Re- | Linear Yes High

gression

SVM Linear/Non- No Medium
linear

Decision Trees | Non-linear Yes High

k-NN Non-linear Yes Low

Neural Net- | Non-linear Yes Low

works

Key Insight: Logistic regression is the go-to choice when you need:

Linear separability

@ Probability estimates

@ Model interpretability

o Fast training and prediction 19/22

Assumptions and Model Diagnostics

Key Assumptions:
@ Linear relationship between logit and features
@ Independence of observations
© No severe multicollinearity among features
© Large sample size (rule of thumb: 10+ events per feature)

Diagnostic Checks:
o Residual plots: Check linearity assumption
e VIF (Variance Inflation Factor): Detect multicollinearity
@ Cook’s distance: Identify influential points
@ Hosmer-Lemeshow test: Goodness of fit

Warning Signs:
e Complete/quasi-complete separation
@ Very large coefficient values

@ Wide confidence intervals
20 /22

Python Implementation

from sklearn.linear_model import LogisticRegression

from sklearn.model_selection import train_test_split

from sklearn.preprocessing import StandardScaler

from sklearn.metrics import classification_report , roc_-auc_score

Prepare data
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2)

Scale features

scaler = StandardScaler ()
X_train_scaled = scaler.fit_transform (X_train)
X_test_scaled = scaler.transform(X_test)

Train model
model = LogisticRegression(random_state=42)
model . fit (X_train_scaled , y_train)

Make predictions
y-pred = model.predict(X_test_scaled)
y-prob = model.predict_proba(X_test_scaled)[:, 1]

Evaluate
print(classification_report(y-test, y_pred))
print (f"AUC: -{roc_auc_score(y-test ,-y_prob):.3f}")

Interpret coefficients

feature_names = ['featurel’, 'feature2', 'feature3’]

for name, coef in zip(feature_names, model.coef_[0]):
print (f"{name}:-{coef:.3f}")

21/22

Questions & Discussion

©® Common Questions:

Why can't we use linear regression for classification?
When does logistic regression fail?
How to handle imbalanced datasets?

What if features are not linearly separable?

Think about:
Real-world applications in your field

(]

When you might choose logistic regression over other methods

22/22

	Introduction to Logistic Regression
	The Sigmoid Function
	Binary Classification
	Maximum Likelihood Estimation
	Multiclass Classification
	Practical Considerations
	Summary

