Supervised Learning: Logistic Regression

Binary and Multiclass Classification

Sarwan Ali

Department of Computer Science Georgia State University

Classification with Logistic Regression

Today's Learning Journey

- 1 Introduction to Logistic Regression
- 2 The Sigmoid Function
- Binary Classification
- Maximum Likelihood Estimation
- Multiclass Classification
- O Practical Considerations
- Summary

What is Logistic Regression?

Key Characteristics:

- Classification algorithm (not regression!)
- Predicts probability of class membership
- Uses sigmoid function for mapping
- Linear decision boundary
- Probabilistic interpretation

Why "Logistic"?

- Uses logistic (sigmoid) function
- Models log-odds (logit) linearly

Linear vs Logistic Regression

Linear Regression

- Continuous output
- $y = \beta_0 + \beta_1 x$
- Range: $(-\infty, +\infty)$
- Direct prediction

Logistic Regression

- Probability output
- $p = \frac{1}{1 + e^{-(\beta_0 + \beta_1 \times)}}$
- Range: [0,1]
- Probabilistic prediction

The Sigmoid Function

Mathematical Definition:

$$\sigma(z) = \frac{1}{1 + e^{-z}}$$

where
$$z = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \ldots + \beta_n x_n$$

Key Properties:

- Range: (0,1)
- S-shaped curve
- Smooth and differentiable
- $\sigma(0) = 0.5$

As
$$z \to +\infty$$
, $\sigma(z) \to 1$

As
$$z \to -\infty$$
, $\sigma(z) \to 0$

Why Sigmoid Function?

Advantages of Sigmoid:

- Probability Interpretation
 - Output range [0, 1] represents probabilities
 - Natural threshold at 0.5
- Smooth Transition
 - Continuous and differentiable
 - Smooth decision boundary
- Mathematical Properties
 - Nice derivative: $\sigma'(z) = \sigma(z)(1 \sigma(z))$
 - Enables gradient-based optimization

Decision Rule:

$$\hat{y} = \begin{cases} 1 & \text{if } \sigma(z) \ge 0.5 \\ 0 & \text{if } \sigma(z) < 0.5 \end{cases}$$

Since $\sigma(z) \ge 0.5$ when $z \ge 0$:

$$\hat{y} = \begin{cases} 1 & \text{if } z \ge 0 \\ 0 & \text{if } z < 0 \end{cases}$$

Binary Logistic Regression Model **Problem Setup:**

• Target variable
$$y \in \{0,1\}$$
 (binary)
• Features $\mathbf{x} = [x_1, x_2, \dots, x_n]^T$

• Parameters
$$\beta = [\beta_0, \beta_1, \dots, \beta_n]^T$$

Model Equations:

Odds and Log-Odds:

$$z = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \ldots + \beta_n x_n = \beta^T \mathbf{x}$$

$$p(y=1|\mathbf{x}) = \sigma(z) = \frac{1}{1+e^{-z}}$$

$$p(y=1|\mathbf{x}) = \sigma(z) = \frac{1}{1+e^{-z}}$$

$$p(y=0|\mathbf{x}) = 1 - p(y=1|\mathbf{x}) = 1 - \sigma(z)$$

$$p(y=0|\mathbf{x}) =$$

$$p(y=0|\mathbf{x})$$
 =

$$p(y=0|\mathbf{x})=$$

$$p(y=0|\mathbf{x}) =$$

$$=\frac{1}{1+e^{-z}}$$

$$\frac{-}{1+e^{-z}}$$

Log-Odds (Logit) = $\ln(\text{Odds}) = z = \beta^T \mathbf{x}$

(1)

(2)

(3)

Odds =
$$\frac{p(y=1|\mathbf{x})}{p(y=0|\mathbf{x})} = \frac{\sigma(z)}{1-\sigma(z)} = e^z$$

Geometric Interpretation

Decision Boundary:

- Linear in feature space
- Defined by z = 0

For 2D case:

$$\beta_0 + \beta_1 x_1 + \beta_2 x_2 = 0$$
$$\beta_0 \quad \beta_1$$

$$x_2 = -\frac{\beta_0}{\beta_2} - \frac{\beta_1}{\beta_2} x_1$$

Distance from boundary determines confidence

Maximum Likelihood Principle

Goal: Find parameters β that maximize the likelihood of observed data

Given training data: $\{(\mathbf{x}_1, y_1), (\mathbf{x}_2, y_2), \dots, (\mathbf{x}_m, y_m)\}$

Likelihood for one sample:

$$p(y_i|\mathbf{x}_i,\beta) = \sigma(\beta^T\mathbf{x}_i)^{y_i} \cdot (1 - \sigma(\beta^T\mathbf{x}_i))^{1-y_i}$$

Total Likelihood (assuming independence):

$$L(\beta) = \prod_{i=1}^{m} \rho(y_i|\mathbf{x}_i,\beta) = \prod_{i=1}^{m} \sigma(\beta^T\mathbf{x}_i)^{y_i} \cdot (1 - \sigma(\beta^T\mathbf{x}_i))^{1-y_i}$$

Log-Likelihood:

$$\ell(\beta) = \ln L(\beta) = \sum_{i=1}^{m} \left[y_i \ln(\sigma(\beta^T \mathbf{x}_i)) + (1 - y_i) \ln(1 - \sigma(\beta^T \mathbf{x}_i)) \right]$$

Cost Function and Optimization

From Log-Likelihood to Cost Function:

We want to **maximize** log-likelihood $\ell(\beta)$

Equivalently, **minimize** negative log-likelihood:

$$J(eta) = -rac{1}{m}\ell(eta) = -rac{1}{m}\sum_{i=1}^{m}\left[y_i\ln(\sigma(eta^T\mathbf{x}_i)) + (1-y_i)\ln(1-\sigma(eta^T\mathbf{x}_i))
ight]$$

This is the Cross-Entropy Loss!

$$\frac{\partial J}{\partial \beta_j} = \frac{1}{m} \sum_{i=1}^m (\sigma(\beta^T \mathbf{x}_i) - y_i) x_{ij}$$

Vector Form:

$$\nabla J = \frac{1}{m} \mathbf{X}^T (\sigma - \mathbf{y})$$

where $\sigma = [\sigma(\beta^T \mathbf{x}_1), \dots, \sigma(\beta^T \mathbf{x}_m)]^T$

Gradient Descent for Logistic Regression **Algorithm:**

• Initialize: $\beta^{(0)}$ (usually zeros or small random values)

- Repeat until convergence:

$$z_i^{(t)} = (\beta^{(t)})^T \mathbf{x}_i$$

$$\sigma_i^{(t)} = \frac{1}{1 + e^{-z_i^{(t)}}}$$
$$\beta^{(t+1)} = \beta^{(t)} - \alpha \nabla J(\beta^{(t)})$$

$$= \beta^{(t)} - \frac{\alpha}{m} \mathbf{X}^T (\sigma^{(t)} - \mathbf{y})$$

- \bullet α is the learning rate

Key Points:

- No closed-form solution (unlike linear regression)

 Cost function is convex ⇒ global minimum guaranteed Other optimizers: Newton-Raphson, L-BFGS, etc.

(6)

(7)

(8)

(9)

Extending to Multiclass Problems

Problem: What if we have K > 2 classes?

Two Main Approaches:

- 1. One-vs-Rest (OvR)
 - Train K binary classifiers
 - Class k vs all other classes
 - Prediction: class with highest probability
- 2. One-vs-One (OvO)
 - Train $\binom{K}{2}$ binary classifiers
 - Every pair of classes
 - Prediction: majority voting

One-vs-Rest

One-vs-One

Multinomial Logistic Regression (Softmax)

Direct Multiclass Extension:

For K classes, we have K sets of parameters: $\beta_1, \beta_2, \ldots, \beta_K$

Softmax Function:

$$p(y = k|\mathbf{x}) = \frac{e^{\beta_k' \mathbf{x}}}{\sum_{j=1}^K e^{\beta_j^T \mathbf{x}}}$$

Properties:

- $\sum_{k=1}^{K} p(y=k|\mathbf{x}) = 1$ (probabilities sum to 1)
- Generalizes sigmoid to multiple classes
- When K = 2, reduces to binary logistic regression

Decision Rule:

$$\hat{y} = \arg\max_{k} p(y = k | \mathbf{x})$$

Softmax: Mathematical Details

Cross-Entropy Loss for Multiclass:

For one-hot encoded labels $\mathbf{y}_i = [y_{i1}, y_{i2}, \dots, y_{iK}]^T$:

$$J(\beta_1,\ldots,\beta_K) = -\frac{1}{m}\sum_{i=1}^m\sum_{k=1}^K y_{ik}\ln(p(y=k|\mathbf{x}_i))$$

Gradient:

$$\frac{\partial J}{\partial \beta_k} = \frac{1}{m} \sum_{i=1}^{m} (p(y = k | \mathbf{x}_i) - y_{ik}) \mathbf{x}_i$$

Comparison with Binary Case:

Aspect	Binary	Multiclass	
Activation	Sigmoid	Softmax	
Parameters	eta (one set)	eta_1,\ldots,eta_K	
Output	Single probability	Probability vector	

Advantages and Disadvantages

Advantages:

- Probabilistic output
- No assumptions about feature distributions
- Less prone to overfitting
- Computationally efficient
- No hyperparameters to tune
- Interpretable coefficients
- Linear decision boundary
 When to Use Logistic Regression:
- Need probabilistic predictions
 - Linear separability exists
 - Interpretability is important
 - Baseline model for comparison
 - Large dataset with simple patterns

Disadvantages:

- Assumes linear relationship
- Sensitive to outliers
- Requires large sample sizes
- Can struggle with complex patterns
- Feature scaling important
 - May need feature engineering

Implementation Tips

Preprocessing:

- **Feature Scaling:** Standardize features (mean=0, std=1)
- Handle Missing Values: Imputation or removal
- Categorical Variables: One-hot encoding

Regularization:

- **L1** (Lasso): $J(\beta) + \lambda \sum_{j=1}^{n} |\beta_j|$
- L2 (Ridge): $J(\beta) + \lambda \sum_{i=1}^{n} \beta_i^2$
- Elastic Net: Combination of L1 and L2

Model Evaluation:

- Accuracy, Precision, Recall, F1-score
- ROC curve and AUC
- Confusion matrix
- Cross-validation

Key Takeaways

- Logistic Regression is a classification algorithm that uses the sigmoid function to model probabilities
- **Sigmoid Function** maps any real number to (0,1), making it perfect for probability estimation
- Maximum Likelihood principle provides a principled way to find optimal parameters
- Linear Decision Boundary separates classes in feature space
- Multiclass Extension can be achieved through One-vs-Rest, One-vs-One, or Softmax
- Practical Algorithm with good interpretability and efficiency

? Remember: Logistic regression models the log-odds linearly!

Example: Email Spam Classification

Problem: Classify emails as spam (1) or not spam (0)

- Features:
 - x_1 : Number of exclamation marks
 - x₂: Frequency of word "free"
 - x₃: Length of email

Model:

$$z = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3$$

 $P(\text{spam}) = \frac{1}{1 + e^{-z}}$

Interpretation:

- $\beta_1 > 0$: More exclamation marks \rightarrow higher spam probability
- $\beta_2 > 0$: Word "free" increases spam probability
- $\beta_3 <$ 0: Longer emails are less likely to be spam

Logistic Regression vs Other Classifiers

Algorithm	Decision Boundary	Probabilistic	Interpretability
Logistic Regression	Linear	Yes	High
SVM	Linear/Non- linear	No	Medium
Decision Trees	Non-linear	Yes	High
k-NN	Non-linear	Yes	Low
Neural Net- works	Non-linear	Yes	Low

Key Insight: Logistic regression is the go-to choice when you need:

- Linear separability
- Probability estimates
- Model interpretability
- Fast training and prediction

Assumptions and Model Diagnostics

Key Assumptions:

- Linear relationship between logit and features
- Independence of observations
- No severe multicollinearity among features
- Large sample size (rule of thumb: 10+ events per feature)

Diagnostic Checks:

- Residual plots: Check linearity assumption
- VIF (Variance Inflation Factor): Detect multicollinearity
- Cook's distance: Identify influential points
- Hosmer-Lemeshow test: Goodness of fit

Warning Signs:

- Complete/quasi-complete separation
- Very large coefficient values
- Wide confidence intervals

Python Implementation

```
from sklearn linear model import Logistic Regression
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.metrics import classification_report, roc_auc_score
# Prepare data
X_{train}, X_{test}, y_{train}, y_{test} = train_{test_split}(X, y, test_{size} = 0.2)
# Scale features
scaler = StandardScaler()
X_train_scaled = scaler.fit_transform(X_train)
X_test_scaled = scaler.transform(X_test)
# Train model
model = Logistic Regression (random_state=42)
model fit (X_train_scaled , v_train)
# Make predictions
v_pred = model.predict(X_test_scaled)
v_prob = model.predict_proba(X_test_scaled)[:, 1]
# Evaluate
print(classification_report(v_test. v_pred))
print(f"AUC:-{roc_auc_score(v_test.-v_prob):.3f}")
# Interpret coefficients
feature_names = ['feature1', 'feature2', 'feature3']
for name, coef in zip(feature_names, model.coef_[0]):
    print (f" {name}: -{coef:.3f}")
```

Questions & Discussion

? Common Questions:

- Why can't we use linear regression for classification?
- When does logistic regression fail?
- How to handle imbalanced datasets?
- What if features are not linearly separable?

9

Think about:

- Real-world applications in your field
- When you might choose logistic regression over other methods

