
Supervised Learning: Decision Trees
Construction, Pruning, Entropy, Information Gain, and Gini Impurity

Sarwan Ali

Department of Computer Science
Georgia State University

� Understanding Decision Trees �

1 / 27

Today’s Learning Journey

1 Introduction to Decision Trees

2 Tree Construction

3 Entropy and Information Theory

4 Information Gain

5 Gini Impurity

6 Tree Pruning

7 Building Decision Trees - Complete Example

8 Summary and Applications

2 / 27

What are Decision Trees?

Definition: A tree-like model of decisions and their
possible consequences

Structure: Hierarchical representation with nodes
and branches

Purpose: Classification and regression tasks

Interpretability: Easy to understand and visualize

Key Components:

Root Node: Starting point

Internal Nodes: Decision points

Leaf Nodes: Final outcomes

Branches: Possible paths

Weather

Sunny

Play No Play

Rainy

No Play

3 / 27

Advantages and Disadvantages

Advantages m

Easy to understand and interpret

No need for data preprocessing

Handles both numerical and categorical
data

Non-parametric method

Can capture non-linear relationships

Feature selection is automatic

Disadvantages l

Prone to overfitting

Unstable (small data changes = different
tree)

Biased toward features with more levels

Can create overly complex trees

May not perform well with linear
relationships

4 / 27

Decision Tree Construction Algorithm

General Algorithm (Top-Down Approach):

1 Start with root node containing all training examples

2 Select best attribute to split the data using splitting criteria

3 Create branches for each value of the selected attribute

4 Partition examples into subsets based on attribute values

5 Recursively repeat for each subset until stopping criteria met

Stopping Criteria:

All examples in a node have the same class label

No more attributes to split on

Maximum depth reached

Minimum number of samples per node/leaf

Improvement in purity is below threshold

5 / 27

Attribute Selection Criteria

How do we choose the best attribute to split?

We need measures to evaluate the quality of a split:
Entropy

Measures disorder/impurity in
the dataset

Information Gain

Reduction in entropy after
splitting

Gini Impurity

Alternative measure of node
impurity

Goal: Choose the attribute that best separates the classes (maximizes information gain or
minimizes impurity)

6 / 27

Understanding Entropy

Entropy measures the amount of uncertainty or disorder in a dataset.

Mathematical Definition:

H(S) = −
c∑

i=1

pi log2(pi)

Where:

S = dataset

c = number of classes

pi = proportion of examples belonging to class i

Properties:

H(S) = 0 when all examples belong to the same class (pure)

H(S) is maximum when classes are equally distributed

For binary classification: H(S) = −p log2(p)− (1− p) log2(1− p)

7 / 27

Entropy Examples

Example 1: Pure Dataset

10 positive examples, 0 negative

p+ = 1.0, p− = 0.0

H(S) = −1.0 log2(1.0)− 0.0 log2(0.0) = 0

Example 2: Balanced Dataset

5 positive, 5 negative examples

p+ = 0.5, p− = 0.5

H(S) = −0.5 log2(0.5)− 0.5 log2(0.5) =
1.0

Example 3: Imbalanced Dataset

8 positive, 2 negative examples

p+ = 0.8, p− = 0.2

H(S) = −0.8 log2(0.8)− 0.2 log2(0.2) =
0.72

0 0.2 0.4 0.6 0.8 1
0

0.5

1

p (proportion of positive class)

E
n
tr
op
y
H
(S

)
8 / 27

Information Gain Concept

Information Gain measures the reduction in entropy achieved by splitting the dataset on a
particular attribute.

Mathematical Definition:

IG (S ,A) = H(S)−
∑

v∈Values(A)

|Sv |
|S |

H(Sv)

Where:

S = original dataset
A = attribute we’re considering for splitting
Sv = subset of S where attribute A has value v
|Sv | = number of examples in subset Sv

Interpretation:

Higher information gain = better split
Choose attribute with maximum information gain
Represents expected reduction in entropy 9 / 27

Information Gain Example

Tennis Playing Dataset:

Outlook Temperature Humidity Wind Play Tennis
Sunny Hot High Weak No
Sunny Hot High Strong No

Overcast Hot High Weak Yes
Rain Mild High Weak Yes
Rain Cool Normal Weak Yes
Rain Cool Normal Strong No

Overcast Cool Normal Strong Yes
Sunny Mild High Weak No
Sunny Cool Normal Weak Yes
Rain Mild Normal Weak Yes
Sunny Mild Normal Strong Yes

Overcast Mild High Strong Yes
Overcast Hot Normal Weak Yes
Rain Mild High Strong No

Total: 14 examples (9 Yes, 5 No) H(S) = − 9
14 log2(

9
14)−

5
14 log2(

5
14) = 0.940

10 / 27

Information Gain Calculation

Computing Information Gain for ”Outlook”:
Subsets after splitting on Outlook:

Sunny: 5 examples (2 Yes, 3 No)

H(Ssunny) = −2

5
log2(

2

5
)− 3

5
log2(

3

5
) = 0.971

Overcast: 4 examples (4 Yes, 0 No)

H(Sovercast) = −4

4
log2(

4

4
) = 0

Rain: 5 examples (3 Yes, 2 No)

H(Srain) = −3

5
log2(

3

5
)− 2

5
log2(

2

5
) = 0.971

Information Gain:

IG (S ,Outlook) = 0.940

−
[
5

14
× 0.971 +

4

14
× 0 +

5

14
× 0.971

]
= 0.940− 0.693 = 0.247

Similarly, we calculate IG for other attributes and choose the one with highest IG.
11 / 27

Gini Impurity

Gini Impurity is an alternative measure of node impurity, widely used in CART algorithm.

Mathematical Definition:

Gini(S) = 1−
c∑

i=1

p2i

Where:

S = dataset

c = number of classes

pi = proportion of examples belonging to class i

Properties:

Gini(S) = 0 when all examples belong to the same class (pure)

Gini(S) is maximum when classes are equally distributed

For binary classification: Gini(S) = 1− p2 − (1− p)2 = 2p(1− p)

Range: [0, 0.5] for binary classification
12 / 27

Gini Impurity vs Entropy

Gini Examples:

Pure: p = 1.0

Gini = 1− 1.02 = 0

Balanced: p = 0.5

Gini = 1− 0.52 − 0.52 = 0.5

Imbalanced: p = 0.8

Gini = 1− 0.82 − 0.22 = 0.32

Gini Gain:

GiniGain(S ,A) = Gini(S)−
∑
v

|Sv |
|S |

Gini(Sv)

0 0.2 0.4 0.6 0.8 1
0

0.5

1

p (proportion of positive class)

Im
p
u
ri
ty

Entropy
Gini

Both measures are similar, but Gini is

computationally faster

13 / 27

Comparison: Entropy vs Gini

Aspect Entropy Gini Impurity
Formula −

∑
pi log2(pi) 1−

∑
p2i

Range [0, log2(c)] [0, 1− 1
c]

Computation Slower (logarithm) Faster (no logarithm)

Sensitivity More sensitive to
changes

Less sensitive

Usage ID3, C4.5 algorithms CART algorithm

Pure node 0 0

Binary balanced 1.0 0.5

Which to choose?

Both produce similar trees in practice

Gini is faster to compute

Entropy has theoretical foundation in information theory
14 / 27

The Overfitting Problem

Overfitting in Decision Trees:
What happens without pruning?

Tree grows until each leaf is pure

Memorizes training data including noise

Poor generalization to new data

High variance in predictions

Signs of overfitting:

Very deep trees

Small number of samples per leaf

High training accuracy, low test accuracy

Complex rules that don’t generalize

0 2 4 6 8 10
0

0.2
0.4
0.6
0.8
1

Tree Complexity

E
rr
or

Training Error
Test Error

Solution: Pruning - removing parts of the tree that don’t improve performance

15 / 27

Types of Pruning

Pre-pruning (Early Stopping)

Stop growing tree during construction

Based on stopping criteria:

Maximum depth
Minimum samples per node/leaf
Minimum information gain
Maximum number of leaf nodes

Advantages: Fast, simple

Disadvantages: May stop too early

Post-pruning

Grow full tree, then remove branches

Methods:

Reduced Error Pruning
Cost Complexity Pruning
Error-Based Pruning

Advantages: More accurate, avoids
premature stopping

Disadvantages: Computationally
expensive

Most common approach: Use validation set to determine optimal pruning

16 / 27

Cost Complexity Pruning

Cost Complexity Pruning (Minimal Cost-Complexity Pruning):
Balances tree complexity with accuracy using a complexity parameter α.

Cost Function:
Rα(T) = R(T) + α|T |

Where:

R(T) = error rate of tree T

|T | = number of leaf nodes in tree T

α = complexity parameter (tuning parameter)

Algorithm:
1 Grow full tree
2 For each internal node, calculate cost improvement from pruning
3 Find subtree that minimizes Rα(T) for given α
4 Use cross-validation to select optimal α

17 / 27

Pruning Example

Before Pruning:

Age ¡ 30

Income < 50K

No (40/5) Yes (10/1)

Credit > 600

Yes (30/2) No (20/3)

After Pruning:

Age < 30

No (50/6) Yes (50/5)

Numbers in parentheses: (total samples/misclassified) 18 / 27

Step-by-Step Tree Construction

Complete Example: Tennis Dataset
Step 1: Calculate initial entropy

H(S) = − 9

14
log2(

9

14
)− 5

14
log2(

5

14
) = 0.940

Step 2: Calculate Information Gain for each attribute

IG (S ,Outlook) = 0.247

IG (S ,Temperature) = 0.029

IG (S ,Humidity) = 0.152

IG (S ,Wind) = 0.048

Step 3: Choose attribute with highest IG → Outlook
Step 4: Split dataset and repeat for each branch

19 / 27

Final Decision Tree

Outlook

Humidity

No Yes

Sunny

Yes

Overcast

Wind

Yes No

Rain

Decision Rules:

If Outlook = Overcast → Play Tennis = Yes
If Outlook = Sunny and Humidity = Normal → Play Tennis = Yes
If Outlook = Rain and Wind = Weak → Play Tennis = Yes
Otherwise → Play Tennis = No

20 / 27

Key Takeaways

Decision Trees Summary:

Construction Process:

Top-down, greedy approach

Select best attribute using splitting criteria

Recursively build subtrees

Apply stopping criteria

Splitting Criteria:

Entropy: Information theory based

Information Gain: Reduction in entropy

Gini Impurity: Faster alternative

Pruning:

Pre-pruning: Early stopping

Post-pruning: Remove after building

Prevents overfitting

Improves generalization

Advantages:

Interpretable and explainable

Handles mixed data types

No assumptions about data distribution

Feature selection built-in

21 / 27

Applications and Extensions

Real-World Applications:

Medical Diagnosis: Disease prediction

Finance: Credit scoring, fraud detection

Marketing: Customer segmentation

Manufacturing: Quality control

Web: Content recommendation

Education: Student performance
prediction

Why Decision Trees?

Regulatory compliance (explainable AI)

Domain expert validation

Feature importance analysis

Extensions & Variants:

Random Forest: Ensemble of trees

Gradient Boosting: Sequential
improvement

XGBoost: Optimized gradient boosting

C4.5: Handles missing values

CART: Binary splits only

Regression Trees:

Predict continuous values

Use MSE instead of entropy

Leaf nodes contain mean values

22 / 27

Implementation Considerations

Hyperparameter Tuning:

Tree Structure:

max depth: Maximum tree depth

min samples split: Minimum samples to
split

min samples leaf: Minimum samples per leaf

max leaf nodes: Maximum number of leaves

max features: Features to consider per split

Splitting Criteria:

criterion: ’gini’, ’entropy’, ’log loss’

splitter: ’best’ vs ’random’

min impurity decrease: Minimum
impurity reduction

Pruning:

ccp alpha: Cost complexity parameter

Cross-validation for optimal alpha
Best Practices:

Use validation set for hyperparameter tuning

Consider ensemble methods for better performance

Visualize tree structure for interpretability

Check feature importance scores
23 / 27

Performance Evaluation

Evaluation Metrics:

Classification:

Accuracy: TP+TN
TP+TN+FP+FN

Precision: TP
TP+FP

Recall: TP
TP+FN

F1-Score: 2×Precision×Recall
Precision+Recall

AUC-ROC: Area under ROC curve

Regression:

MSE: 1
n

∑n
i=1(yi − ŷi)

2

MAE: 1
n

∑n
i=1 |yi − ŷi |

R²: Coefficient of determination

Cross-Validation:

K-fold cross-validation

Stratified K-fold for imbalanced data

Time series split for temporal data

Overfitting Detection:

Training vs validation error

Learning curves

Validation curves

Feature Importance:

Gini/Entropy-based importance

Permutation importance

SHAP values for explainability

24 / 27

Tree Visualization

Visualizing Decision Trees:
Interpretation Tips:

Node color: Indicates dominant class

Samples: Number of training examples

Value: Class distribution

Gini/Entropy: Node impurity

Tree Depth Analysis:

Shallow trees: High bias, low variance

Deep trees: Low bias, high variance

Optimal depth: Balance bias-variance

Pruning Validation:

Plot validation curve

Find optimal complexity parameter

Compare pruned vs unpruned

25 / 27

Common Pitfalls and Solutions

Common Pitfalls:

Overfitting: Deep, complex trees

Solution: Pruning, max depth

Bias toward categorical features: More
levels = higher IG

Solution: Gain ratio, balanced splitting

Instability: Small data changes =
different tree

Solution: Ensemble methods

Imbalanced data: Bias toward majority
class

Solution: Class weights, resampling

Best Practices:

Data preprocessing:
Handle missing values
Encode categorical variables
Scale if using distance-based splits

Model selection:
Use cross-validation
Grid search for hyperparameters
Consider ensemble methods

Interpretation:
Visualize tree structure
Analyze feature importance
Validate with domain experts

26 / 27

Summary and Next Steps

What We’ve Learned:

Decision Tree Fundamentals: Structure, construction, and interpretation

Splitting Criteria: Entropy, Information Gain, and Gini Impurity

Pruning Techniques: Pre-pruning and post-pruning to prevent overfitting

Practical Implementation: Python code and best practices

Evaluation Methods: Metrics and visualization techniques

Next Topics in Our ML Journey:

Ensemble Methods: Random Forest, Gradient Boosting

Support Vector Machines: Maximum margin classification

Neural Networks: Deep learning foundations

Model Selection: Cross-validation and hyperparameter tuning

Questions & Discussion

27 / 27

	Introduction to Decision Trees
	Tree Construction
	Entropy and Information Theory
	Information Gain
	Gini Impurity
	Tree Pruning
	Building Decision Trees - Complete Example
	Summary and Applications

