
Supervised Learning: Ensemble Methods
Random Forests, Bagging, Boosting (AdaBoost, Gradient Boosting)

Sarwan Ali

Department of Computer Science
Georgia State University

² Combining Learners for Better Performance ²

1 / 28

Today’s Learning Journey

1 Introduction to Ensemble Methods

2 Bagging (Bootstrap Aggregating)

3 Random Forests

4 Boosting

5 Comparison and Best Practices

6 Advanced Topics and Extensions

7 Practical Implementation

8 Real-World Applications

9 Summary and Future Directions

2 / 28

What are Ensemble Methods?

Definition: Combine multiple learning algorithms to
create a stronger predictor than any individual learner
alone.

Key Principle: ”Wisdom of the crowd”

Multiple weak learners → Strong learner

Reduce overfitting and variance

Improve generalization

Mathematical Foundation:

ŷ = fensemble(x) = Combine(f1(x), f2(x), . . . , fM(x))

h1

h2

h3

hM

...

Combine H

Base Learners

Ensemble

3 / 28

Why Do Ensembles Work?

Bias-Variance Decomposition:

E [(y − f̂ (x))2] = Bias2 + Variance + Noise

Benefits:

Reduce Variance: Averaging reduces
fluctuations

Reduce Bias: Sequential correction of
errors

Improve Robustness: Less sensitive to
outliers

Target

Ensemble Individual
Predictions

Feature Space

4 / 28

Types of Ensemble Methods

Ensemble Methods

Parallel Methods Sequential Methods

Bagging Random Forest AdaBoost Gradient Boosting

Independent training Sequential training

5 / 28

Bootstrap Aggregating (Bagging)

Key Idea: Train multiple models on different bootstrap
samples

Algorithm:
1 For b = 1, 2, . . . ,B:

Draw bootstrap sample Db from training set D
Train model fb on Db

2 Combine predictions:

Regression: ŷ = 1
B

∑B
b=1 fb(x)

Classification: Majority vote

Bootstrap Sample: Sample n observations with
replacement from original dataset of size n

Original Data

D1 D2 DB· · ·

f1 f2 fB· · ·

Average/Vote

6 / 28

Bagging: Mathematical Analysis

Variance Reduction: For independent models with variance σ2: Var
(

1
B

∑B
b=1 fb(x)

)
= σ2

B

With Correlation ρ:

Var

(
1

B

B∑
b=1

fb(x)

)
= ρσ2 +

1− ρ

B
σ2

Key Insights

As B → ∞, variance approaches ρσ2

Lower correlation ρ leads to better variance reduction

Goal: Create diverse, uncorrelated models

Out-of-Bag (OOB) Error: Use samples not in bootstrap for validation

P(observation not selected) =

(
1− 1

n

)n

≈ 1

e
≈ 0.37

7 / 28

Random Forests: Enhanced Bagging

Key Innovation: Add feature randomness to bagging

Algorithm:
1 For b = 1, 2, . . . ,B:

Draw bootstrap sample Db

At each split in tree:

Randomly select m features (m < p)
Find best split among these m features

Grow tree fully (no pruning)

2 Combine via averaging/voting

Feature Selection:

Classification: m =
√
p

Regression: m = p/3

Xj

Xk Xl

y1 y2 y3 y4

Random subset
of features

Features: {X1,X2, . . . ,Xp}
Random m: {Xj ,Xk ,Xl}

8 / 28

Random Forests: Advantages and Properties

Advantages:

✓ Handles large datasets efficiently

✓ Robust to outliers and noise

✓ Provides feature importance

✓ No overfitting with more trees

✓ Handles missing values

✓ Works for both classification and
regression

Feature Importance:

Importance(Xj) =
1

B

B∑
b=1

∑
t∈Tb

I (v(t) = j)·p(t)·∆(t)

Hyperparameters:

n estimators: Number of trees (B)

max features: m (features per split)

max depth: Tree depth limit

min samples split: Min samples to split

bootstrap: Use bootstrap sampling

Best Practices

Start with default parameters

Increase trees until OOB error stabilizes

Tune max features for your problem

9 / 28

Introduction to Boosting

Key Idea: Sequentially learn from mistakes of previous
models

Philosophy:

Focus on hard-to-classify examples

Each model corrects errors of previous ones

Combine weak learners into strong learner

General Framework:

Fm(x) = Fm−1(x) + αmhm(x)

where:

Fm(x): Ensemble after m iterations

hm(x): m-th weak learner

αm: Weight of m-th learner

Training Data

h1

h2

h3

F (x) =
∑

αihi (x)

reweight

reweight

Focus on
mistakes

10 / 28

AdaBoost (Adaptive Boosting)

Algorithm:

1 Initialize weights: w
(1)
i = 1

n for i = 1, . . . , n
2 For m = 1, 2, . . . ,M:

1 Train weak learner hm on weighted dataset

2 Calculate weighted error: ϵm =
∑n

i=1 w
(m)
i 1[yi ̸= hm(xi)]

3 Calculate learner weight: αm = 1
2 log

(
1−ϵm
ϵm

)
4 Update sample weights:

w
(m+1)
i = w

(m)
i exp(−αmyihm(xi))/Zm

where Zm is normalization constant

3 Final classifier: H(x) = sign
(∑M

m=1 αmhm(x)
)

Key Insight: Misclassified examples get higher weights, correctly classified get lower weights

11 / 28

AdaBoost: Weight Updates Visualization

Training Iterations
m = 1 m = 3 m = 5 m = 7 m = 9Correct

Incorrect

Weight

✓ Correctly classified
p Misclassified

Learner Weight Relationship:

If ϵm < 0.5 (better than random): αm > 0

If ϵm = 0.5 (random): αm = 0

If ϵm > 0.5 (worse than random): αm < 0

12 / 28

Gradient Boosting

Key Idea: Fit new models to residuals of previous models
Algorithm:

1 Initialize: F0(x) = argminγ
∑n

i=1 L(yi , γ)
2 For m = 1, 2, . . . ,M:

1 Compute negative gradients (pseudo-residuals):

rim = −
[
∂L(yi ,F (xi))

∂F (xi)

]
F=Fm−1

2 Train weak learner hm to predict rim
3 Find optimal step size:

αm = argmin
α

n∑
i=1

L(yi ,Fm−1(xi) + αhm(xi))

4 Update: Fm(x) = Fm−1(x) + αmhm(x)

Common Loss Functions:

Regression: Squared loss: L(y ,F) = 1
2(y − F)2

Classification: Logistic loss: L(y ,F) = log(1 + exp(−yF))
13 / 28

Gradient Boosting: Intuitive Understanding

Analogy: Like learning to play darts

First throw: Aim at center, miss

Second throw: Aim at previous miss

Third throw: Aim at new miss

Continue: Each throw corrects previous
errors

Mathematical Perspective:

New Model = Old Model+Learning Rate×Error Correction

1st
2nd

3rd

Each throw corrects previous error

14 / 28

Bagging vs. Boosting Comparison

Aspect Bagging Boosting
Training Parallel (independent) Sequential (dependent)

Focus Reduce variance Reduce bias

Sampling Bootstrap sampling Weighted sampling

Base Learners Strong learners (deep trees) Weak learners (stumps)

Overfitting Less prone More prone

Noise Sensitivity Robust Sensitive

Scalability Highly parallelizable Sequential only

Examples Random Forest AdaBoost, XGBoost

Key Takeaway

Bagging: Good when you have high variance models (overfitting)
Boosting: Good when you have high bias models (underfitting)

15 / 28

When to Use Each Method

Use Random Forest when:

✓ Need interpretable feature importance

✓ Have noisy data with outliers

✓ Want robust, stable performance

✓ Need fast training/prediction

✓ Have mixed data types

Typical Performance:

Good baseline performance

Consistent across datasets

Minimal hyperparameter tuning

Use Gradient Boosting when:

✓ Need highest possible accuracy

✓ Have clean, well-preprocessed data

✓ Can afford longer training time

✓ Have expertise for tuning

✓ Competition/production setting

Typical Performance:

Often best single-model performance

Requires careful tuning

Prone to overfitting

16 / 28

Hyperparameter Tuning Guidelines

Random Forest:

n estimators: 100-500 (more is better)

max features:
√
p or log2(p)

max depth: 10-20 or None

min samples split: 2-10

Gradient Boosting:

n estimators: 100-1000

learning rate: 0.01-0.3

max depth: 3-8 (shallow trees)

subsample: 0.8-1.0

Tuning Strategy:

1 Start with default parameters

2 Use cross-validation

3 Grid search or random search

4 Monitor validation curves

Important Trade-offs

Learning rate vs. n estimators: Lower
rate needs more estimators

Tree depth vs. regularization: Deeper
trees need more regularization

Training time vs. accuracy: More
complex models take longer

17 / 28

Modern Ensemble Extensions

XGBoost (Extreme Gradient Boosting):

Optimized gradient boosting

Built-in regularization

Parallel processing

Missing value handling

Feature importance

LightGBM:

Leaf-wise tree growth

Faster training

Lower memory usage

Categorical feature support

CatBoost:

Handles categorical features natively

Reduces overfitting

No hyperparameter tuning needed

Robust to outliers

Stacking:

Meta-learning approach

Combines different algorithm types

Uses cross-validation

Higher complexity but better performance

18 / 28

Stacking (Stacked Generalization)

Two-Level Architecture:
1 Level 0 (Base Models):

Train diverse algorithms (RF, SVM, NN)
Generate predictions using CV

2 Level 1 (Meta-Model):
Learn from base model predictions
Often simple: Linear/Logistic Regression

Algorithm:

1 Split data into K folds
2 For each base model:

Train on K-1 folds
Predict on held-out fold

3 Train meta-model on base predictions

4 Final prediction: Meta-model output

Training Data

RF SVM NN

Meta Features

Meta Model

Final Prediction

Level 0

Level 1

19 / 28

Ensemble Diversity and Model Selection

Importance of Diversity:
Ensemble Error = Ē − Ā

where Ē is average individual error and Ā is ambiguity (diversity measure)

Sources of Diversity:

Data: Bootstrap, subsampling

Features: Random subsets, PCA

Algorithms: Different model types

Parameters: Different hyperparameters

Objectives: Different loss functions

Measuring Diversity:

Correlation: Lower is better

Disagreement: Higher is better

Q-statistic: Measures pairwise diversity

Selection Strategies:

Forward selection

Backward elimination, Genetic algorithms

Key Principle

Accuracy-Diversity Trade-off: Need balance between individual model accuracy and
ensemble diversity

20 / 28

Python Implementation: Random Forest

from sklearn.ensemble import RandomForestClassifier

from sklearn.model_selection import train_test_split

from sklearn.metrics import accuracy_score , classification_report

import numpy as np

Load and prepare data

X_train , X_test , y_train , y_test = train_test_split(

X, y, test_size =0.2, random_state =42)

Create and train Random Forest

rf = RandomForestClassifier(n_estimators =100, max_features=’sqrt’,

max_depth =10, min_samples_split =5, random_state =42,

n_jobs=-1 # Use all processors)

Train the model

rf.fit(X_train , y_train)

y_pred = rf.predict(X_test) # Make predictions

accuracy = accuracy_score(y_test , y_pred)

Feature importance

feature_importance = rf.feature_importances_

21 / 28

Python Implementation: Gradient Boosting

from sklearn.ensemble import GradientBoostingClassifier

from sklearn.model_selection import GridSearchCV

Define parameter grid

param_grid = {

’n_estimators ’: [100, 200, 300], ’learning_rate ’: [0.01, 0.1, 0.2],

’max_depth ’: [3, 4, 5], ’subsample ’: [0.8, 0.9, 1.0]}

Create gradient boosting classifier

gb = GradientBoostingClassifier(random_state =42)

Grid search with cross -validation

grid_search = GridSearchCV(

gb , param_grid , cv=5, scoring=’accuracy ’, n_jobs =-1)

Fit and find best parameters

grid_search.fit(X_train , y_train)

best_gb = grid_search.best_estimator_

Predictions

y_pred_gb = best_gb.predict(X_test)

22 / 28

Python Implementation: Advanced Ensembles

XGBoost implementation

import xgboost as xgb

xgb_model = xgb.XGBClassifier(

n_estimators =100, learning_rate =0.1,

max_depth =6,

subsample =0.8,

colsample_bytree =0.8,

random_state =42)

xgb_model.fit(X_train , y_train)

Voting Classifier (Simple Ensemble)

from sklearn.ensemble import VotingClassifier

from sklearn.svm import SVC

from sklearn.naive_bayes import GaussianNB

voting_clf = VotingClassifier(

estimators =[(’rf’, RandomForestClassifier ()),

(’svm’, SVC(probability=True)),(’nb’, GaussianNB ())],

voting=’soft’ # Use predicted probabilities)

voting_clf.fit(X_train , y_train) 23 / 28

Ensemble Methods in Practice

Industry Applications:

¢Finance: Credit scoring, fraud
detection

6Healthcare: Disease diagnosis, drug
discovery

ïE-commerce: Recommendation
systems

�Transportation: Route optimization

Environment: Climate modeling

Kaggle Competition Winners:

Most winners use ensemble methods

Combination of XGBoost, LightGBM,
Neural Networks

Stacking is very common

Success Stories:

Netflix Prize: Ensemble of 107
algorithms

KDD Cup: Random Forests for customer
churn

ImageNet: Deep ensemble networks

Production Considerations:

Latency: Single models faster than
ensembles

Memory: Ensembles require more storage

Interpretability: Individual trees more
interpretable

Maintenance: More complex deployment
pipeline

24 / 28

Case Study: Credit Risk Assessment

Problem: Predict loan default probability

Dataset Characteristics:

50,000 loan applications

20 features (income, age, credit history)

Imbalanced: 5% default rate

Mixed data types

Model Performance:

Model AUC F1
Logistic Regression 0.72 0.31
Random Forest 0.85 0.47
XGBoost 0.88 0.52
Ensemble (Stacking) 0.91 0.58

Implementation Strategy:

1 Data preprocessing and feature
engineering

2 Train diverse base models:

Random Forest (handles mixed types)
XGBoost (high performance)
Logistic Regression (linear patterns)

3 Meta-model: Logistic Regression

4 Cross-validation for robust evaluation

Business Impact:

15% reduction in default losses

Better risk-adjusted pricing

Improved customer experience
25 / 28

Key Takeaways

Ensemble Benefits:

(Improved accuracy over single models

(Increased robustness and stability

8Better bias-variance trade-off

ÔReduced overfitting risk

Method Selection Guide:

Quick baseline: Random Forest

Maximum accuracy: Gradient Boosting

Noisy data: Bagging methods

Complex problems: Stacking

Best Practices:

Start simple, add complexity gradually

Ensure diversity in base models

Use proper cross-validation

Monitor for overfitting

Consider computational constraints

Common Pitfalls:

Using identical base models

Ignoring computational costs

Over-tuning hyperparameters

Not validating properly

26 / 28

Future Directions and Advanced Topics

Emerging Trends:

Deep Ensembles: Neural network
combinations

AutoML: Automated ensemble selection

Online Learning: Streaming ensemble
updates

Federated Ensembles: Distributed
learning

Research Directions:

Theoretical understanding of ensemble
diversity

Efficient ensemble pruning

Uncertainty quantification

Fairness in ensemble decisions

Tools and Libraries:

Scikit-learn: Basic ensemble methods

XGBoost/LightGBM: Gradient boosting

MLxtend: Stacking implementations

H2O.ai: AutoML ensembles

Next Steps:

Practice with real datasets

Experiment with different combinations

Study competition solutions

Understand your domain constraints

27 / 28

Thank You

Questions?
² Remember: The wisdom of crowds often beats individual experts!

h1

h2 h3

h4

You + Ensemble Methods

Contact: sali85@student.gsu.edu

28 / 28

	Introduction to Ensemble Methods
	Bagging (Bootstrap Aggregating)
	Random Forests
	Boosting
	Comparison and Best Practices
	Advanced Topics and Extensions
	Practical Implementation
	Real-World Applications
	Summary and Future Directions

