Supervised Learning: Support Vector Machines

Linear and Non-linear SVM, Kernel Trick, Margin Optimization

Sarwan Ali

Department of Computer Science
Georgia State University

I Understanding Support Vector Machines &2

1/25

Today's Learning Journey

o Introduction to Support Vector Machines
© Linear Support Vector Machines

© The Kernel Trick

@ Non-linear Support Vector Machines

© Margin Optimization

@ Practical Considerations

@ Advanced Topics

© Comparison with Other Methods

© Summary and Applications

2/25

What are Support Vector Machines?

Support Vector Machines (SVMs) are powerful
supervised learning algorithms for:

o Classification (primary use)
@ Regression (SVR)

Class A

Key Idea: Find the optimal hyperplane that separates
classes with maximum margin p
’. Class B
Why SVMs? ~ Hyperplane
o Effective in high-dimensional spaces /

@ Memory efficient

o Versatile (different kernel functions)

3/25

The Margin Concept

Margin
Support Vectors

Margin: Distance between the decision boundary and the closest data points from each class

Support Vectors: The data points that lie closest to the decision boundary
4/25

Linear SVM: Mathematical Formulation

Goal: Find hyperplane w’x + b = 0 that maximizes the margin

Distance from point to hyperplane:

T b
d lw'x+ b
[wl]
For linearly separable data:
o Class +1: w'x; +b > +1
o Class -1: wa, +b< -1
Margin width:
Optimization ProLIem
maximize m (1)

subject to y;(w'x;+b)>1, Vi (2)

Primal Optimization Problem

Equivalent formulation (easier to solve):
1

minimize §||w||2 (3)

subject to y;(w'x;+b)>1, Vi (4)

For non-separable data (Soft Margin):

PN .
minimize §|]w|| + C;&- (5)
subject to y;i(w'x; +b)>1—¢; (6)
§ >0, Vi (7)

Where:
@ &; are slack variables (allow misclassification)

o C is the regularization parameter (trade-off between margin and errors)

6/25

Dual Optimization Problem

Using Lagrange multipliers, we get the dual form:

maximize Za, - = ZZa QjYiyiX; xJ (8)

I].Jl

subject to Z ajyi =0 (9)
i=1
0<a;<C, Vi (10)
Solution: .
w = Z Qi YiXi
i=1
Decision function:
f(x) = sign (Z aiyix] x + b>

i=1
Key insight: Only support vectors have a; > 0

7/25

Motivation for Kernels

Problem: What if data is not linearly
separable?

Solution: Map data to higher-dimensional

space where it becomes linearly separable Original Space Feature Space
Mapping function: ° ° ¢ ° .
¢:RY - RP oL Ct e

where D >> d

Problem: Computing ¢(x) explicitly can be
expensive or impossible

8/25

The Kernel Trick

Key Insight: In the dual formulation, we only need dot products x,ij

Kernel Function:

K(xi,x;) = o(x7) T o(x))
Dual form with kernels:

maximize Za, - = ZZQ ajyiyiK(xi, x;) (11)

11_/1

Decision function:
n
f(x) = sign (Z a;yiK(xj,x) + b)
i=1

Advantage: We can work in infinite-dimensional spaces without explicitly computing ¢(x)!
9/25

Common Kernel Functions

Kernel Formula Use Case

Linear K(xi,x;) = x] x; Linearly separable data
Polynomial K(xi,x;) = (x]x; +1)¢ Polynomial decision boundaries
RBF (Gaussian) | K(x;,x;) = exp (—y||x; — x[|*) | Complex, non-linear patterns
Sigmoid K(xi,x;) = tanh(ax] x; +) Neural network-like

10/25

Non-linear SVM Example
XOR Problem: Not linearly separable in 2D After RBF Kernel transformation:
X2 Input Space

®2 Feature Space
-1 +1
(]
+1 -1
Separable!
X1 $1
Key Points:

o RBF kernel creates local decision boundaries
@ Each support vector creates a "bump” in feature space

o Final decision boundary is combination of all bumps

11/25

Hyperparameter Tuning

Key Hyperparameters:

1. Regularization Parameter (C):
e Small C: Wider margin, more misclassification (underfitting)

e Large C: Narrower margin, less misclassification (overfitting)

2. RBF Kernel Parameter (v):
@ Small v: Smooth decision boundary (underfitting)

o Large v: Complex decision boundary (overfitting)

~
Low vy High ~

12/25

Hard Margin vs Soft Margin

Hard Margin SVM: Soft Margin SVM:
@ No misclassification allowed @ Allows some misclassification
@ Only works for linearly separable data o Works for non-separable data
o Optimization: min 3 ||w|| o Optimization: min 3|jw|[2+ C > ¢;
o Constraint: y;(w'x; +b) > 1 o Constraint: yj(wTx; +b) >1— ¢
Perfect . Flexible

13/25

Understanding the Margin

Geometric Margin:

Functional Margin:

Margin Optimization Strategy:
© Maximize the minimum margin: maxmin; ~;
@ Normalize so that minimum functional margin = 1
© This leads to: min||w/||? subject to y;(w'x; + b) > 1
Why maximize margin?
o Better generalization (statistical learning theory)
@ Unique solution

@ Robust to small perturbations

14/25

SVM Algorithm Summary

Training Phase:
@ Choose kernel function K(x;,x;)
@ Solve dual optimization problem to find «;
@ Identify support vectors (where a; > 0)
@ Calculate bias term b using support vectors

Prediction Phase:

f(x) = sign (Z a;yiK(xi,x) + b)

support vectors

Computational Complexity:
o Training: O(n?) to O(n3) depending on solver
@ Prediction: O(ns, - d) where ng, is number of support vectors
e Memory: O(ns,) (only need to store support vectors)

15/25

Advantages and Disadvantages

o Effective in high dimensions @ Slow on large datasets
@ Memory efficient Sensitive to feature scaling
o Versatile (different kernels) No probabilistic output

°

[*]

Poor performance on noisy data

°
°

Global optimum guaranteed @ Choice of kernel and parameters
Works well with small datasets °
°

@ Good generalization Doesn't handle missing values

When to use SVMs:
o High-dimensional data (text classification, gene analysis)
@ Small to medium datasets
o Clear margin of separation exists
o

Need for interpretable support vectors

16 /25

Implementation Tips

Data Preprocessing;:
@ Scale features: Use StandardScaler or MinMaxScaler
@ Handle missing values: Impute or remove
@ Feature selection: Remove irrelevant features

Hyperparameter Tuning;:
@ Use Grid Search or Random Search
o Cross-validation for model selection
o Start with RBF kernel, then try others
e Typical ranges: C € [0.1,1,10,100], v € [0.001,0.01,0.1, 1]

Python Libraries:
@ scikit-learn: SVC for classification, SVR for regression
@ LIBSVM: Fast C4++ implementation with Python bindings

@ sklearn.model _selection: For hyperparameter tuning
17/25

Python Implementation Example

from sklearn import datasets

from sklearn.model_selection import train_test_split, GridSearchCV

from sklearn.svm import SVC

from sklearn.preprocessing import StandardScaler

from sklearn.metrics import classification_report , accuracy.score

Load dataset

X, y = datasets. make_classification(n_samples=1000, n_features=2,
n_redundant=0, n_informative=2,
random_state=42)

Split data

X_train, X_test, y-train, y_test = train_test_split(

X, y, test_size=0.3, random_state:42)
Scale features

scaler = StandardScaler ()
X_train_scaled = scaler.fit_transform(X_train)
X_test_.scaled = scaler.transform(X_test)

Hyperparameter tuning
param_grid = {'C': [0.1, 1, 10, 100],

'gamma’: ['scale’, 'auto', 0.001, 0.01, 0.1, 1],
"kernel': ['rbf’', 'poly’, 'sigmoid']}

svm = SVC()

grid_search = GridSearchCV (svm, param_grid, cv=5, scoring='accuracy')

grid_search . fit(X_train_scaled , y_train)

Best model

best_svm = grid_search.best_estimator._

y_pred = best_svm.predict(X_test_scaled)

print (f" Best-parameters:-{grid_search.best_params_}")
print (f" Accuracy:-{accuracy_score(y-test ,-y_pred):.3f}")

18/25

Multi-class SVM

Problem: SVMs are inherently binary classifiers

Solutions for Multi-class Classification:

1. One-vs-Rest (OvR):
e Train k binary classifiers (one per class)
o Class / vs. all other classes
@ Prediction: Choose class with highest confidence score
2. One-vs-One (OvO):
o Train (§) = @ binary classifiers
@ Each pair of classes
@ Prediction: Majority voting
3. Directed Acyclic Graph (DAG-SVM):
@ Hierarchical approach using OvO classifiers
@ More efficient prediction than standard OvO

19/25

Support Vector Regression (SVR)

Goal: Find function f(x) = w'¢(x) + b that deviates from targets y; by at most ¢

e-insensitive loss:

0 ifly —f(x)| <e

ly — f(x)| —e otherwise

Le(y, f(x)) = {

Optimization Problem:

A P '
minimize §||W|| +C;(§i+§i)

subject to y; — w ' ¢(x;)) — b < e +¢
wio(x))+b—y <e+&
i, 6 >0

Applications: Time series forecasting, function approximation, financial modeling

20/25

Custom Kernels

Kernel Requirements (Mercer’s Theorem):

o Must be symmetric: K(x;, x;) = K(xj, ;)

@ Must be positive semi-definite

@ Kernel matrix must have non-negative eigenvalues
Domain-Specific Kernels:
String Kernels: For text and biological sequences

Kspectrum 51,52 Z ¢u(51 Du 52)
uexk
Graph Kernels: For structured data

Kuwaik(G1, G2) = Z[)\ (1= XA = AA)]y

Composite Kernels:
e Addition: K(x;,x;) = Ki(xj, x;) + Ka(xi, X;)
o Multiplication: K(x;,x;) = Ki(xi, X;) - Ka(xi, ;)

21/25

SVM vs Other Classifiers

Aspect SVM Logistic Reg. | Random Forest | Neural Net
Interpretability Medium High Medium Low
Training Speed Slow Fast Fast Variable
Prediction Speed Fast Fast Fast Fast
Memory Usage Low Low High Variable
Overfitting Risk Low Medium Low High
Feature Scaling Required | Recommended Not needed Required
High Dimensions Excellent Good Poor Good
Non-linear Data Excellent Poor Excellent Excellent
Probabilistic Output No Yes Yes Yes
Hyperparameter Tuning Critical Simple Moderate Complex

Decision Guide:
@ Use SVM when: High dimensions, clear separation, small-medium datasets
o Use Logistic Regression when: Need probabilities, linear relationships
@ Use Random Forest when: Mixed data types, feature interactions
o

Use Neural Networks when: Very large data, complex patterns
22/25

Real-World Applications

Text Classification:

@ Email spam detection

@ Sentiment analysis

@ Document categorization

@ News article classification
Image Recognition:

o Face recognition

@ Handwritten digit recognition

o Medical image analysis

@ Object detection

Bioinformatics:
@ Gene classification
@ Protein structure prediction
@ Cancer diagnosis
@ Drug discovery
Finance:
o Credit scoring
o Fraud detection
o Algorithmic trading

@ Risk assessment

23/25

Key Takeaways

Support Vector Machines

Core Concepts:
o Maximum Margin: Find optimal separating hyperplane
@ Support Vectors: Only boundary points matter
o Kernel Trick: Handle non-linear data efficiently
@ Dual Formulation: Transform to simpler optimization
Success Factors:
@ Proper feature scaling
Appropriate kernel selection
Careful hyperparameter tuning

Understanding data characteristics

Remember: SVMs excel in high-dimensional spaces but require careful preprocessing and

parameter selection for optimal performance.
24 /25

Questions?

Discussion

Next Topic: k-Nearest Neighbors: Distance metrics, curse of dimensionality

Department of Computer Science
Georgia State University

25 /25

	Introduction to Support Vector Machines
	Linear Support Vector Machines
	The Kernel Trick
	Non-linear Support Vector Machines
	Margin Optimization
	Practical Considerations
	Advanced Topics
	Comparison with Other Methods
	Summary and Applications

