
Supervised Learning: k-Nearest Neighbors
Distance Metrics, Curse of Dimensionality, and Choosing k

Sarwan Ali

Department of Computer Science
Georgia State University

² Understanding k-Nearest Neighbors ²

1 / 18

Today’s Learning Journey

1 Introduction to k-Nearest Neighbors

2 Distance Metrics

3 The Curse of Dimensionality

4 Choosing k

5 Practical Considerations

6 Summary

2 / 18

What is k-Nearest Neighbors (k-NN)?

k-Nearest Neighbors is a simple, intuitive supervised
learning algorithm that:

Makes predictions based on the k closest training
examples

Uses lazy learning - no explicit training phase

Stores all training data and defers computation
until prediction

Works for both classification and regression

Key Idea: Similar inputs should produce similar outputs

x1

x2

A

B

Query
k=3 neighbors

3 / 18

k-NN Algorithm Steps

1 Store all training data {(xi , yi)}ni=1
2 For a new query point xq:

1 Calculate distance from xq to all training points
2 Find the k closest neighbors
3 Predict based on these k neighbors:

Classification: Majority vote
Regression: Average of neighbor values

Key Parameters

k: Number of neighbors to consider

Distance metric: How to measure similarity

4 / 18

Distance Metrics: The Foundation of k-NN

Distance metrics determine how we measure similarity between data points.
For two points x = (x1, x2, . . . , xd) and y = (y1, y2, . . . , yd):
1. Euclidean Distance (L2)

d(x, y) =

√√√√ d∑
i=1

(xi − yi)2

2. Manhattan Distance (L1)

d(x, y) =
d∑

i=1

|xi − yi |

3. Minkowski Distance

d(x, y) =

(
d∑

i=1

|xi − yi |p
)1/p

4. Cosine Distance

d(x, y) = 1− x · y
|x||y|

5. Hamming Distance

d(x, y) =
d∑

i=1

1xi ̸=yi

Special cases:

p = 1: Manhattan

p = 2: Euclidean

p = ∞: Chebyshev
5 / 18

Visual Comparison of Distance Metrics

x1

x2

A

B

Euc
lide

an

Manhattan

Euclidean:
√
5 ≈ 2.24

Manhattan: 3
Chebyshev: max(2, 1) = 2

When to use which?

Euclidean: Continuous features, geometric interpretation
Manhattan: Sparse data, when features have different scales
Cosine: High-dimensional data, text analysis
Hamming: Categorical/binary features

6 / 18

Impact of Distance Metrics on k-NN

Example Dataset:

Point x1 x2

A 1 1
B 2 3
C 4 2

Query 2 2

Distances to Query (2,2):

Euclidean: A(1.41), B(1.41), C(2.24)

Manhattan: A(2), B(1), C(2)

Chebyshev: A(1), B(1), C(2)

x1

x2

A

B

C
Query

Different metrics give different nearest
neighbors!

7 / 18

The Curse of Dimensionality

Definition: As the number of dimensions increases, the performance of k-NN degrades
significantly.

Why does this happen?

1 Distance becomes meaningless
All points become equidistant
Nearest and farthest neighbors have similar
distances

2 Sparsity of data
Volume of high-dimensional space grows
exponentially
Data becomes sparse, neighborhoods become
empty

3 Computational complexity
Distance computation becomes expensive
Memory requirements increase

Low Dimensions

Clear
neighborhoods

High Dimensions

All points
equidistant

8 / 18

Mathematical Insight: Distance Concentration

Distance Concentration Phenomenon:
In high dimensions, the ratio of distances approaches 1: limd→∞

Dmin
Dmax

→ 1
where Dmin and Dmax are the minimum and maximum distances to a query point.
Demonstration:
Consider uniformly distributed points in a unit
hypercube [0, 1]d .
As d increases:

Expected distance ≈
√
d
6

Variance decreases relative to mean

All distances become similar
0 50 100

0.6

0.8

1

Dimension

D
is
ta
n
ce

R
at
io

Implication

In high dimensions, the concept of ”nearest” neighbor loses meaning!

9 / 18

Effects of Curse of Dimensionality on k-NN

Performance Degradation:

Accuracy drops as dimensions increase

Overfitting becomes more likely

Comput. cost increases exponentially

Memory usage becomes prohibitive

Empirical Evidence:

Optimal performance typically at d < 10

Significant degradation at d > 20

Nearly random performance at d > 100

0 20 40 60 80 100

60

80

Number of Dimensions

A
cc
u
ra
cy

(%
)

k-NN Performance
Random Baseline

Solutions
Dimensionality Reduction: PCA, t-SNE, feature selection

Feature Engineering: Create meaningful low-dimensional features

Distance Metric Learning: Learn appropriate distance functions

Locality Sensitive Hashing: Approximate nearest neighbors

10 / 18

Choosing k: The Bias-Variance Tradeoff

The choice of k significantly affects k-NN performance!

Small k (e.g., k=1):

Low bias, high variance

Sensitive to noise and outliers

Complex decision boundaries

Prone to overfitting

Large k:

High bias, low variance

Smooth decision boundaries

Less sensitive to noise

May underfit the data

k=1 (Overfitting)

k=large (Underfitting)

11 / 18

Methods for Choosing k

1. Cross-Validation

Try different values of k (typically odd numbers)

Use k-fold cross-validation to estimate performance

Choose k that minimizes validation error

2. Rule of Thumb

k =
√
n where n is the number of training samples

Choose odd k to avoid ties in classification

Start with k ∈ {1, 3, 5, 7, 9, . . .}

3. Error Analysis

Plot training and validation error vs. k

Look for the ”sweet spot” where both errors are minimized

Consider computational constraints
12 / 18

k Selection: Practical Example

Validation Curve Analysis:

0 5 10 15 20

0.1

0.2

0.3

0.4

k

E
rr
or

R
at
e

Training Error
Validation Error

Optimal k = 9 (lowest validation error)

Guidelines:

1 Start simple: Try k = 1, 3, 5

2 Use cross-validation: 5-fold or 10-fold
3 Consider class balance:

For imbalanced data, use smaller k
Weight neighbors by distance

4 Computational budget: Larger k means
more computation

5 Domain knowledge: Some applications
prefer certain k values

Pro Tip

Always use odd k for binary classification to
avoid ties!

13 / 18

k-NN: Advantages and Disadvantages

Advantages:

✓ Simple and intuitive

✓ No assumptions about data distribution

✓ Works with classification and regression

✓ Can capture complex patterns

✓ Naturally handles multi-class problems

✓ Can be used for anomaly detection

Disadvantages:

p Computationally expensive at prediction
time

p Sensitive to irrelevant features

p Suffers from curse of dimensionality

p Sensitive to scale of features

p Memory intensive (stores all data)

p Poor performance with imbalanced data

When to Use k-NN
Small to medium-sized datasets

Low-dimensional feature spaces (d ¡ 20)

Irregular decision boundaries

When interpretability is important

As a baseline method for comparison
14 / 18

Improving k-NN Performance

Preprocessing Techniques:
1 Feature Scaling:

Standardization: z = x−µ
σ

Min-Max normalization: x ′ = x−xmin

xmax−xmin

2 Feature Selection:
Remove irrelevant features
Use correlation analysis, mutual information

3 Dimensionality Reduction:
PCA, LDA, t-SNE
Preserve most important information

Algorithmic Improvements:

Weighted k-NN: Give closer neighbors more influence

Approximate methods: LSH, random sampling

Efficient data structures: KD-trees, Ball trees

Distance metric learning: Learn optimal distance function
15 / 18

Key Takeaways

1 k-NN Fundamentals:
Simple, lazy learning algorithm
Makes predictions based on k closest neighbors
Works for both classification and regression

2 Distance Metrics Matter:
Choice affects which points are considered neighbors
Euclidean for continuous, Manhattan for sparse data
Consider data characteristics when choosing

3 Curse of Dimensionality:
Performance degrades significantly in high dimensions
Distance becomes meaningless, data becomes sparse
Use dimensionality reduction techniques

4 Choosing k:
Bias-variance tradeoff: small k (high variance), large k (high bias)
Use cross-validation to find optimal k
Consider odd values to avoid ties

16 / 18

Next Steps

What’s Coming Next:

Support Vector Machines (SVMs)
Ensemble Methods (Random Forest, Boosting)
Neural Networks and Deep Learning
Unsupervised Learning Methods

Practice Exercises:

Implement k-NN from scratch
Experiment with different distance metrics
Apply dimensionality reduction techniques
Compare performance across different values of k
Handle imbalanced datasets with weighted k-NN

® Questions? ®
� Remember: The best algorithm is the one that works best for your specific problem! �

17 / 18

Bonus: Mathematical Formulation

k-NN Decision Rule:
For classification with query point xq:

ŷ = argmax
c

∑
i∈Nk (xq)

1yi=c

For regression:

ŷ =
1

k

∑
i∈Nk (xq)

yi

Weighted k-NN:

ŷ =

∑
i∈Nk (xq)

wiyi∑
i∈Nk (xq)

wi

where wi =
1

d(xq ,xi)+ϵ and Nk(xq) denotes the k nearest neighbors of xq.

Note

The small constant ϵ prevents division by zero when query point equals a training point.
18 / 18

	Introduction to k-Nearest Neighbors
	Distance Metrics
	The Curse of Dimensionality
	Choosing k
	Practical Considerations
	Summary

