Unsupervised Learning

Dimensionality Reduction: Principal Component Analysis (PCA) & t-SNE Basics

Sarwan Ali

Department of Computer Science
Georgia State University

8" Reducing Complexity, Preserving Information "g"

1/27

Today's Learning Journey

@ Introduction to Dimensionality Reduction
© Principal Component Analysis (PCA)

© t-SNE Basics

@ Practical Implementation

© Advanced Topics and Extensions

@ Summary and Best Practices

2/21

What is Dimensionality Reduction?

Definition: Process of reducing the number of features
(dimensions) in a dataset while preserving important Xo
information.

Goal: Transform high-dimensional data to Reduce

lower-dimensional space

@ Reduce computational complexity

@ Remove noise and redundancy
o Enable visualization 3D Data

@ Overcome curse of dimensionality

3/27

The Curse of Dimensionality

Problems with High Dimensions:

9] T T T
° of data space 5 100 ﬂ—e—ExponentiaI Growth l/e 7
o Distances become .
° distribution E 10*f :
[9p]
o Computational S
£ 102 |
@ Visualization becomes El 10
qu) | | |
Example: In a 10-dimensional unit hypercube, 2 4 6
99.9% of the volume is within 0.05 of the Dimensions

surfacel

4/27

Types of Dimensionality Reduction

Dimensionality Reduction

- ~,

Linear Methods Non-linear Methods
PCA LDA t-SNE Kernel PCA

Today’s Focus: Principal Component Analysis (PCA) and

5/27

What is Principal Component Analysis?

Definition

PCA is a linear dimensionality reduction technique that transforms data to a lower-dimensional
space by finding the directions (principal components) of maximum variance.

Key ldeas:
@ Find directions of maximum variance
° principal components o
@ Preserve most
o Linear transformation Data with Principal Components

6/27

Mathematical Foundation of PCA

Step 1: Data Preparation

Given data matrix: X = [x1,x2,...,x,]" € R™9 (1)

. 1 —
Center the data: X = X — p where p = - Z X (2)
i=1

Step 2: Covariance Matrix

1 ~rw
C = XTX RdXd
— € (3)
Step 3: Eigendecomposition
Cv,=)\v;fori=1,2,...,d (4)
M>A> ... > A >0 (5)

where v; are eigenvectors (principal components) and \; are eigenvalues
7/27

PCA Algorithm Steps

O Standardize/Center the data

Xij = Wy

Xj = or Xj = Xj — i (6)
gj
@ Compute covariance matrix
R
C= XTX 7
p— (7)
© Find eigenvalues and eigenvectors
C=VAV’ (8)
@ Select top k components
W = [v1,va, ..., vi] € RI*K (9)

© Transform data
Y = XW e R™<K (10)

8/21

Choosing Number of Components

Explained Variance Ratio:

A 3
[c
EVR, - d—l (11) .Lg_ 1 T T ©
Zj:l Aj S osl 90%Ahreshold |
[}
Cumulative Explained Variance: é 0.6 - :
< 04t -
ry A g
CEV, = &=t} (12) 3 02p -
2_721)\J L::w 0 | | | |
E 2 4 6 8
O

Common Threshold: Retain components Principal Components
explaining 90-95% of variance

Elbow Method: Look for the "elbow” in the scree plot where eigenvalues drop significantly

9/27

PCA Example: 2D to 1D

Mathematics:

0.5 15
1.0 2.0
Original Data: Data: X= [1.5 25 (13)
20 1.0
25 15
Centered: X =X — (14)
. 0.75 0.25
Covariance: C = [0'25 0.35} (15)
Eigenvalues: \; = 0.9, A\, = 0.2 (16)

PC1: v; = [0.8,0.6]" (17)

Advantages and Limitations of PCA

. . @ Assumes linear relationships
Reduces computational complexity

@ Principal components may be hard to

Removes correlated features .
Interpret

No hyperparameters to tune .. .
yperp Sensitive to scaling

Mathematically well-founded
y May not preserve local structure

Reversible transformation .
Not suitable for sparse data

Global method (considers all data)

e 6 o6 o

Works well for linear relationships

When to Use PCA

@ High-dimensional data with linear correlations
@ Need to reduce noise and computational cost
@ Want to visualize high-dimensional data

@ Preprocessing for other ML algorithms

11/27

Introduction to t-SNE

t-Distributed Stochastic Neighbor Embedding (t-SNE)

A non-linear dimensionality reduction technique particularly well-suited for visualization of
high-dimensional datasets by preserving local structure.

Key Concepts:
@ Preserves local neighborhood structure
o Uses ‘
@ Non-linear and
o Excellent for Preserves Clusters

@ Stochastic optimization

Developed by: Laurens van der Maaten and Geoffrey Hinton (2008)

12/27

t-SNE Algorithm Overview

Main Idea: Convert similarities between data points to joint probabilities and minimize
KL-divergence between high and low-dimensional representations.

Step 1: Compute pairwise similarities in high-dimensional space

exp(—|xi — x;*/207)

pjli = (18)
N Sk op(— i —xi[2/207)
Step 2: Symmetrize probabilities
Pjli + Pilj
- 19
pU 2[7 ()
Step 3: Compute similarities in low-dimensional space using t-distribution
1 v l12y-1

qij = _
! Dokt +lyk = will?) 1

13/27

t-SNE Optimization

Step 4: Minimize KL-divergence between P and Q
pij
C = KL(PI|Q) = Y pilog ™2 (1)
i 9ij
Gradient:

oC -
by, = 422 (P = @) =)L+ lyi =y) (22)
J

Key Hyperparameters:
o Perplexity: Controls local neighborhood ~ Why t-distribution?

size (5-50) @ Heavy tails

o Learning rate: Step size (10-1000) @ Prevents crowding

o lIterations: Number of optimization steps o Better separation in low dimensions
(1000+)

14/27

t-SNE vs PCA Comparison

Aspect PCA t-SNE

Method Linear transformation Non-linear embedding

Preserves Global structure, vari- | Local structure, neigh-
ance borhoods

Computational O(nd?) 0(n?)

Cost

Deterministic Yes No (stochastic)

Hyperparameters | None Perplexity, learning rate

Interpretability Moderate Low

New Data Easy projection Difficult

Best Use Preprocessing, noise re- | Visualization, exploration
duction

Recommendation: Use PCA for dimensionality reduction in ML pipelines, t-SNE for data
visualization and exploration.
15/27

t-SNE Hyperparameter: Perplexity

Perplexity measures the effective number of
local neighbors.

Perplexity(P;) = 2H(P) (23) Low Perplexityligh Perplexity
where H(P;) = — Zj pjji 1082 pj|i Medium Perplexity
Effects of Perplexity:

o Low (5-15): Focus on very local structure

e Medium (20-50): Balance local/global

e High (504): More global structure

Rule of thumb: Perplexity should be smaller than the number of points, typically between
5-50.

16 /27

Common lIssues and Solutions in t-SNE

o Crowding problem @ Use t-distribution (heavy tails)

Curse of intrinsic dimension PCA preprocessing for high dimensions
Non-deterministic results Run multiple times with different seeds
Tune perplexity systematically

Computational complexity

°
°

@ Sensitive to hyperparameters
° Use early exaggeration
°

Difficult interpretation of distances Focus on cluster patterns, not distances

Best Practices

Apply PCA first if d > 50
Try perplexity values: 5, 30, 50, 100
Run for sufficient iterations (> 1000)

Check convergence of cost function

PCA Implementation in Python

import numpy as np

from sklearn.decomposition import PCA

from sklearn.preprocessing import StandardScaler
import matplotlib. pyplot as plt

Load and prepare data

X = ... # Your high—dimensional data
scaler = StandardScaler ()

X_scaled = scaler.fit_transform (X)

Apply PCA
pca = PCA(n_components=2)
X_pca = pca.fit_transform (X_scaled)

Analyze results

print (f" Explained-variance-ratio:

—————— {pca.explained_variance_ratio_}")

print (f" Cumulative-variance:

—————— {np.cumsum(pca.explained_variance_ratio_)}")

Visualize

plt.scatter(X_pca[:, 0], X_pca[:, 1])
plt.xlabel (' First-Principal-Component’)
plt.ylabel(’Second-Principal-Component’)
plt.show ()

Key Parameters:

o n_components: Number of
components

@ whiten: Normalize components

o svd_solver: Algorithm choice

Useful Attributes:
@ components_: Principal axes

@ explained_variance_:
Eigenvalues

@ mean_: Per-feature mean

1827

t-SNE Implementation in Python

import numpy as np

from sklearn.manifold import TSNE
from sklearn.decomposition import PCA
import matplotlib.pyplot as plt

Prepare data (apply PCA first if high—dim)
if X.shape[l] > 50:

pca = PCA(n_components=50)

X_reduced = pca.fit_transform (X)
else:

X_reduced = X

Apply t—SNE with different perplexities
perplexities = [56, 30, 50]
fig , axes = plt.subplots(1, 3, figsize=(15, 5))

for i, perp in enumerate(perplexities):
tsne = TSNE(n_components=2,
perplexity=perp,
random_state =42,
n_iter=1000)
X_tsne = tsne.fit_transform (X_reduced)

axes[i].scatter(X_tsne[:, 0], X_tsne[:, 1],
c=y, cmap='tabl0")
axes[i].set_title(f ' Perplexity-=-{perp}’)
plt.show ()

Key Parameters:
@ perplexity: 5-50 typically
@ learning rate: 10-1000
@ n_iter: > 1000
o early_exaggeration: 12.0

@ random_state: For
reproducibility

Tips:
@ Monitor k1 _divergence_
@ Use init="pca’ for better
initialization
o Consider method=’barnes_hut’
for speed

19/27

Case Study: Iris Dataset Visualization

Dataset: 150 samples, 4 features, 3 classes

PCA Results:
e PC1: 72.8% variance
e PC2: 22.9% variance
e Total: 95.7% with 2 components

@ Clear linear separation

t-SNE Results:
o Better cluster separation
@ Non-linear boundaries preserved
o Perplexity = 30 works well

@ More compact clusters

PC2

t-SINE2
t-SNE

—— t-SNE1

20/27

Variants and Extensions

PCA Variants:
o Kernel PCA: Non-linear extension using {_SNE Extensions:

kernel trick o Barnes-Hut t-SNE: O(N log N)

o Sparse PCA: Interpretable components complexity

with sparsity Parametric t-SNE: Neural network-based

UMAP: Uniform Manifold Approximation
LargeVis: For very large datasets

o

o Incremental PCA: For streaming/large .
datasets

o

o

o Probabilistic PCA: Bayesian approach

o Independent Component Analysis Multi-scale SNE: Multiple perplexities

(ICA): Statistical independence

Modern Alternatives
o UMAP: Faster than t-SNE, preserves global structure better

o Autoencoders: Deep learning approach to dimensionality reduction

o Variational Autoencoders (VAE): Probabilistic latent representations

When to Use Which Method?

High-dim
data?

Visualization
only?

Linear
structure?

Use PCA Use LDA Use t-SNE Use UMAP
Preprocessing Supervised Data exploration Large datasets
Feature reduction Classification Clustering viz Global structure

22/27

Evaluation Metrics for Dimensionality Reduction

Quantitative Metrics:
o Reconstruction Error: Qualitative Assessment:
@ Visual cluster separation

X _ X2
E =[x - Xl (24) @ Preservation of known structure
o Explained Variance Ratio: @ Interpretability of components
@ Stability across runs
Var(Y) Y
EVR = (25)
Var(X) Task-specific Evaluation:
o Trustworthiness: Local neighborhood o Classification accuracy after reduction
preservation o Clustering quality metrics
o Continuity: Smooth mapping @ Downstream task performance

preservation

23/27

Key Takeaways

Principal Component Analysis (PCA)

o Best for: Linear relationships, preprocessing, noise reduction
o Strengths: Fast, deterministic, interpretable, reversible

o Limitations: Linear assumptions, global method

t-Distributed Stochastic Neighbor Embedding (t-SNE)

o Best for: Visualization, cluster exploration, non-linear data

@ Strengths: Preserves local structure, handles non-linearity

o Limitations: Stochastic, hyperparameter sensitive, not for new data

v

General Principle

Choose dimensionality reduction technique based on your specific goal: preprocessing (PCA),
visualization (t-SNE), or both in combination.

Best Practices and Recommendations

Data Preprocessing: Practical Workflow:
o Always center/standardize data for PCA © Explore data with PCA first

o Handle missing values appropriately @ Choose number of components wisely

o Consider outlier detection @ Use t-SNE for final visualization
o Apply PCA before t-SNE for high

dimensions

© Validate results with known structure
© Document hyperparameters used

Parameter Selection: .
] Common Pitfalls:
o PCA: Use scree plot or cumulative

variance o Over-interpreting t-SNE distances

o t-SNE: Try multiple perplexity values e Using too few iterations

o Validate with domain knowledge @ Ignoring computational constraints

25 /27

Next Steps and Further Reading

Recommended Resources:

Advanced Topics to Explore: o van der Maaten & Hinton (2008) -

e Manifold learning theory Original t-SNE paper

o "Pattern Recognition and Machine

@ Autoencoders for dimensionality reduction T
Learning” - Bishop
@ UMAP and other modern methods . i
_]]) o Scikit-learn documentation
o High-dimensional data analysis .) i .
@ "Dimensionality Reduction: A

@ Streaming dimensionality reduction Comparative Review” - van der Maaten et

Practice Exercises: al.
o Apply PCA to image datasets Tools and Libraries:
o Compare t-SNE with different perplexities @ sklearn.decomposition
o Implement PCA from scratch o sklearn.manifold
o Evaluate reconstruction quality @ umap-learn

@ plotly for interactive-visualization
26 /27

Thank You!

Questions & Discussion

Remember: The best dimensionality reduction technique depends on
your data and goals!

Next: Association Rules: Market basket analysis, Apriori algorithm

27 /27

	Introduction to Dimensionality Reduction
	Principal Component Analysis (PCA)
	t-SNE Basics
	Practical Implementation
	Advanced Topics and Extensions
	Summary and Best Practices

