Unsupervised Learning

Dimensionality Reduction: Principal Component Analysis (PCA) & t-SNE Basics

Sarwan Ali

Department of Computer Science Georgia State University

Reducing Complexity, Preserving Information

Today's Learning Journey

- 1 Introduction to Dimensionality Reduction
- Principal Component Analysis (PCA)
- 3 t-SNE Basics
- Practical Implementation
- **5** Advanced Topics and Extensions
- Summary and Best Practices

What is Dimensionality Reduction?

Definition: Process of reducing the number of features (dimensions) in a dataset while preserving important information.

Goal: Transform high-dimensional data to lower-dimensional space

- Reduce computational complexity
- Remove noise and redundancy
- Enable visualization
- Overcome curse of dimensionality

The Curse of Dimensionality

Problems with High Dimensions:

- Exponential growth of data space
- Distances become less meaningful
- Sparse data distribution
- Computational complexity increases
- Visualization becomes impossible

Example: In a 10-dimensional unit hypercube, 99.9% of the volume is within 0.05 of the surface!

Types of Dimensionality Reduction

Today's Focus: Principal Component Analysis (PCA) and t-SNE basics

What is Principal Component Analysis?

Definition

PCA is a linear dimensionality reduction technique that transforms data to a lower-dimensional space by finding the directions (principal components) of maximum variance.

Key Ideas:

- Find directions of maximum variance
- Orthogonal principal components
- Preserve most important information
- Linear transformation

Data with Principal Components

Mathematical Foundation of PCA Step 1: Data Preparation

Given data matrix: $\mathbf{X} = [\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n]^T \in \mathbb{R}^{n \times d}$

Center the data:
$$\tilde{\mathbf{X}} = \mathbf{X} - \boldsymbol{\mu}$$
 where $\boldsymbol{\mu} = \frac{1}{n} \sum_{i=1}^{n} \mathbf{x}_i$

$$\mathbf{C} = rac{1}{n-1} \mathbf{ ilde{X}}^T \mathbf{ ilde{X}} \in \mathbb{R}^{d imes d}$$

$$t=\lambda_i \mathbf{v}_i$$

$$\mathbf{C}\mathbf{v}_i = \lambda_i \mathbf{v}_i \text{ for } i = 1, 2, \dots, d$$

 $\lambda_1 > \lambda_2 > \ldots > \lambda_d > 0$

where \mathbf{v}_i are eigenvectors (principal components) and λ_i are eigenvalues

(5)

(3)

(1)

(2)

PCA Algorithm Steps

Standardize/Center the data

Compute covariance matrix

Select top k components

Transform data

Find eigenvalues and eigenvectors

$$ilde{ ilde{ imes}}_{ij}$$

 $\tilde{x}_{ij} = \frac{x_{ij} - \mu_j}{\sigma_i}$ or $\tilde{x}_{ij} = x_{ij} - \mu_j$

(6)

(7)

(8)

(9)

 $\mathbf{C} - \mathbf{V} \mathbf{\Lambda} \mathbf{V}^T$

 $\mathbf{W} = [\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k] \in \mathbb{R}^{d \times k}$

 $\mathbf{Y} = \tilde{\mathbf{X}}\mathbf{W} \in \mathbb{R}^{n \times k}$

 $\mathbf{C} = \frac{1}{n-1} \tilde{\mathbf{X}}^T \tilde{\mathbf{X}}$

Choosing Number of Components

Explained Variance Ratio:

$$\mathsf{EVR}_i = \frac{\lambda_i}{\sum_{j=1}^d \lambda_j}$$

Cumulative Variance Explained

Principal Components

Cumulative Explained Variance:

$$\mathsf{CEV}_k = \frac{\sum_{i=1}^k \lambda_i}{\sum_{j=1}^d \lambda_j}$$

Common Threshold: Retain components

explaining 90-95% of variance

Elbow Method: Look for the "elbow" in the scree plot where eigenvalues drop significantly

PCA Example: 2D to 1D

Mathematics:

Data:
$$\mathbf{X} = \begin{bmatrix} 0.5 & 1.5 \\ 1.0 & 2.0 \\ 1.5 & 2.5 \\ 2.0 & 1.0 \\ 2.5 & 1.5 \end{bmatrix}$$
Centered: $\tilde{\mathbf{X}} = \mathbf{X} - \boldsymbol{\mu}$

Centered:
$$\tilde{\mathbf{X}} = \mathbf{X} - \boldsymbol{\mu}$$
Covariance: $\mathbf{C} = \begin{bmatrix} 0.75 & 0.25 \\ 0.25 & 0.35 \end{bmatrix}$

Eigenvalues:
$$\lambda_1 = 0.9, \lambda_2 = 0.2$$

$$(16)$$
 (17)

PC1:
$$\mathbf{v}_1 = [0.8, 0.6]^T$$

(13)

(14)

(15)

Advantages and Limitations of PCA

Advantages:

- Reduces computational complexity
- Removes correlated features
- No hyperparameters to tune
- Mathematically well-founded
- Reversible transformation
- Works well for linear relationships

Limitations:

- Assumes linear relationships
- Principal components may be hard to interpret
- Sensitive to scaling
- May not preserve local structure
- Not suitable for sparse data
- Global method (considers all data)

When to Use PCA

- High-dimensional data with linear correlations
- Need to reduce noise and computational cost
- Want to visualize high-dimensional data
- Preprocessing for other ML algorithms

Introduction to t-SNF

t-Distributed Stochastic Neighbor Embedding (t-SNE)

A non-linear dimensionality reduction technique particularly well-suited for visualization of high-dimensional datasets by preserving local structure.

Key Concepts:

- Preserves local neighborhood structure
- Uses probability distributions
- Non-linear and non-parametric
- Excellent for visualization
- Stochastic optimization

Developed by: Laurens van der Maaten and Geoffrey Hinton (2008)

t-SNE Algorithm Overview

Main Idea: Convert similarities between data points to joint probabilities and minimize KL-divergence between high and low-dimensional representations.

Step 1: Compute pairwise similarities in high-dimensional space

$$p_{j|i} = \frac{\exp(-\|\mathbf{x}_i - \mathbf{x}_j\|^2 / 2\sigma_i^2)}{\sum_{k \neq i} \exp(-\|\mathbf{x}_i - \mathbf{x}_k\|^2 / 2\sigma_i^2)}$$

$$\sum_{k \neq i} \exp(-\|\mathbf{x}_i - \mathbf{x}_k\| / 2\delta_i)$$

Step 2: Symmetrize probabilities

$$p_{ij} = \frac{p_{j|i} + p_{i|j}}{2n}$$

Step 3: Compute similarities in low-dimensional space using t-distribution

$$q_{ij} = rac{(1+\|\mathbf{y}_i-\mathbf{y}_j\|^2)^{-1}}{\sum_{k
eq l}(1+\|\mathbf{y}_k-\mathbf{y}_l\|^2)^{-1}}$$

(18)

(19)

(20)

t-SNE Optimization

Step 4: Minimize KL-divergence between P and Q

$$C = KL(P||Q) = \sum_{i,i} p_{ij} \log \frac{p_{ij}}{q_{ij}}$$

Gradient:

$$rac{\partial \mathcal{C}}{\partial \mathbf{y}_i} = 4 \sum_j (p_{ij} - q_{ij}) (\mathbf{y}_i - \mathbf{y}_j) (1 + \|\mathbf{y}_i - \mathbf{y}_j\|^2)^{-1}$$
rs:

- **Key Hyperparameters:**
 - size (5-50)
 - Learning rate: Step size (10-1000)
 - Iterations: Number of optimization

Why t-distribution?

- Heavy tails
 - rowding
- Prevents crowding

Perplexity: Controls local neighborhood

(21)

t-SNE vs PCA Comparison

PCA	t-SNE
Linear transformation	Non-linear embedding
Global structure, vari-	Local structure, neigh-
ance	borhoods
$O(nd^2)$	$O(n^2)$
Yes	No (stochastic)
None	Perplexity, learning rate
Moderate	Low
Easy projection	Difficult
Preprocessing, noise reduction	Visualization, exploration
	Linear transformation Global structure, variance $O(nd^2)$ Yes None Moderate Easy projection

Recommendation: Use PCA for dimensionality reduction in ML pipelines, t-SNE for data visualization and exploration.

t-SNE Hyperparameter: Perplexity

Perplexity measures the effective number of local neighbors.

Perplexity
$$(P_i) = 2^{H(P_i)}$$
 (23)

where
$$H(P_i) = -\sum_j p_{j|i} \log_2 p_{j|i}$$

Effects of Perplexity:

- Low (5-15): Focus on very local structure
- Medium (20-50): Balance local/global
- **High (50+):** More global structure

Rule of thumb: Perplexity should be smaller than the number of points, typically between 5-50.

Common Issues and Solutions in t-SNE

Common Issues:

- Crowding problem
- Curse of intrinsic dimension
- Non-deterministic results
- Sensitive to hyperparameters
- Computational complexity
- Difficult interpretation of distances

Solutions:

- Use t-distribution (heavy tails)
- PCA preprocessing for high dimensions
- Run multiple times with different seeds
- Tune perplexity systematically
- Use early exaggeration
- Focus on cluster patterns, not distances

Best Practices

- Apply PCA first if d > 50
- Try perplexity values: 5, 30, 50, 100
- Run for sufficient iterations (≥ 1000)
- Check convergence of cost function

PCA Implementation in Python

```
import numpy as np
from sklearn decomposition import PCA
from sklearn preprocessing import StandardScaler
import matplotlib, pyplot as plt
# Load and prepare data
X = ... # Your high-dimensional data
scaler = StandardScaler()
X_scaled = scaler.fit_transform(X)
# Apply PCA
pca = PCA(n_components=2)
X_{pca} = pca.fit_transform(X_scaled)
# Analyze results
print(f" Explained - variance - ratio :
-----{pca.explained_variance_ratio_}")
print (f" Cumulative - variance :
-----{np.cumsum(pca.explained_variance_ratio_)}")
# Visualize
plt.scatter(X_pca[:, 0], X_pca[:, 1])
plt.xlabel('First-Principal-Component')
plt.ylabel('Second-Principal-Component')
plt.show()
```

Key Parameters:

- n_components: Number of components
- whiten: Normalize components
- svd_solver: Algorithm choice

Useful Attributes:

- components_: Principal axes
- explained_variance_: Eigenvalues
- mean_: Per-feature mean

t-SNE Implementation in Python

```
import numpy as np
from sklearn manifold import TSNE
from sklearn, decomposition import PCA
import matplotlib pyplot as plt
# Prepare data (apply PCA first if high-dim)
if X.shape[1] > 50:
    pca = PCA(n_components=50)
    X_{reduced} = pca.fit_{transform}(X)
else:
    X reduced = X
# Apply t-SNE with different perplexities
perplexities = [5, 30, 50]
fig , axes = plt.subplots(1, 3, figsize=(15, 5))
for i, perp in enumerate(perplexities):
    tsne = TSNE(n_components=2.
                perplexity=perp.
                random_state=42
                n iter=1000)
    X_tsne = tsne.fit_transform(X_reduced)
    axes[i].scatter(X_tsne[:, 0], X_tsne[:, 1],
                   c=v. cmap='tab10')
    axes[i].set_title(f'Perplexity == {perp}')
plt.show()
```

Key Parameters:

- perplexity: 5-50 typically
- learning_rate: 10-1000
- $n_{\text{iter}} \ge 1000$
- early_exaggeration: 12.0
- random_state: For reproducibility

Tips:

- Monitor kl_divergence_
- Use init='pca' for better initialization
- Consider method='barnes_hut' for speed

Case Study: Iris Dataset Visualization

Dataset: 150 samples, 4 features, 3 classes

PCA Results:

- PC1: 72.8% variance
- PC2: 22.9% variance
- Total: 95.7% with 2 components
- Clear linear separation

t-SNE Results:

- Better cluster separation
- Non-linear boundaries preserved
- Perplexity = 30 works well
- More compact clusters

Variants and Extensions

PCA Variants:

- Kernel PCA: Non-linear extension using kernel trick
- Sparse PCA: Interpretable components with sparsity

• Incremental PCA: For streaming/large

- datasets

 Probabilistic PCA: Bayesian approach
- Independent Component Analysis

(ICA): Statistical independence

t-SNE Extensions:

- Barnes-Hut t-SNE: O(N log N) complexity
- Parametric t-SNE: Neural network-based
- UMAP: Uniform Manifold Approximation
 LargeVis: For very large datasets
- Multi-scale SNE: Multiple perplexities

Modern Alternatives

- UMAP: Faster than t-SNE, preserves global structure better
- Autoencoders: Deep learning approach to dimensionality reduction
- Variational Autoencoders (VAE): Probabilistic latent representations

When to Use Which Method?

Evaluation Metrics for Dimensionality Reduction

Quantitative Metrics:

• Reconstruction Error:

$$E = \|\mathbf{X} - \hat{\mathbf{X}}\|_F^2 \tag{24}$$

Explained Variance Ratio:

$$EVR = \frac{Var(\mathbf{Y})}{Var(\mathbf{X})}$$
 (25)

- Trustworthiness: Local neighborhood preservation
- Continuity: Smooth mapping preservation

Qualitative Assessment:

- Visual cluster separation
- Preservation of known structure
- Interpretability of components
- Stability across runs

Task-specific Evaluation:

- Classification accuracy after reduction
- Clustering quality metrics
- Downstream task performance

Key Takeaways

Principal Component Analysis (PCA)

- Best for: Linear relationships, preprocessing, noise reduction
- Strengths: Fast, deterministic, interpretable, reversible
- Limitations: Linear assumptions, global method

t-Distributed Stochastic Neighbor Embedding (t-SNE)

- Best for: Visualization, cluster exploration, non-linear data
- Strengths: Preserves local structure, handles non-linearity
- Limitations: Stochastic, hyperparameter sensitive, not for new data

General Principle

Choose dimensionality reduction technique based on your specific goal: preprocessing (PCA), visualization (t-SNE), or both in combination.

Best Practices and Recommendations

Data Preprocessing:

- Always center/standardize data for PCA
- Handle missing values appropriately
- Consider outlier detection
- Apply PCA before t-SNE for high dimensions

Parameter Selection:

- PCA: Use scree plot or cumulative variance
- t-SNE: Try multiple perplexity values
- Validate with domain knowledge

Practical Workflow:

- Explore data with PCA first
- Ochoose number of components wisely
- Use t-SNE for final visualization
- Validate results with known structure
- Document hyperparameters used

Common Pitfalls:

- Over-interpreting t-SNE distances
- Using too few iterations
- Ignoring computational constraints

Next Steps and Further Reading

Advanced Topics to Explore:

- Manifold learning theory
- Autoencoders for dimensionality reduction
- UMAP and other modern methods
- High-dimensional data analysis
- Streaming dimensionality reduction

Practice Exercises:

- Apply PCA to image datasets
- Compare t-SNE with different perplexities
- Implement PCA from scratch
- Evaluate reconstruction quality

Recommended Resources:

- van der Maaten & Hinton (2008) -Original t-SNE paper
 - "Pattern Recognition and Machine Learning" - Bishop
 - Scikit-learn documentation
 - "Dimensionality Reduction: A Comparative Review" - van der Maaten et al.

Tools and Libraries:

- sklearn.decomposition
- sklearn.manifold
- umap-learn
- plotly for interactive visualization

Contact

Thank You!

Questions & Discussion

Remember: The best dimensionality reduction technique depends on your data and goals!

Next: Association Rules: Market basket analysis, Apriori algorithm