Unsupervised Learning: Association Rules Market Basket Analysis and Apriori Algorithm

Sarwan Ali

Department of Computer Science Georgia State University

🛍 Understanding Association Rules 鎆

1/21

Today's Learning Journey

- 1 Introduction to Association Rules
- (2) Key Concepts and Terminology
- The Apriori Algorithm
- Worked Example
- 5 Generating Association Rules
- 6 Applications and Advantages
- Variations and Improvements
 - 8 Summary

What are Association Rules?

- Association Rules identify relationships between different items in a dataset
- Discover patterns of the form: "If X, then Y"
- Most commonly used in Market Basket Analysis
- Help businesses understand customer purchasing behavior

Real-World Example

"People who buy bread and butter also tend to buy milk"



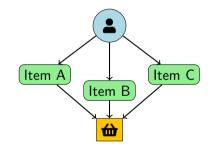
Market Basket Analysis

Definition:

- Technique to identify items frequently bought together
- Analyzes transactional data
- Reveals hidden patterns in customer behavior

Applications:

- Product placement in stores
- Cross-selling strategies
- Recommendation systems
- Inventory management



(a)

Essential Terminology

Itemset

A collection of one or more items. Example: {Bread, Milk}

Transaction

A set of items purchased together in a single purchase

Frequent Itemset

An itemset that appears in at least a minimum number of transactions

Association Rule

An implication of the form $X \Rightarrow Y$ where X and Y are itemsets

Transaction ID	Items			
T1	{Bread, Milk, Butter}			
Т2	{Bread, Eggs}			
Т3	{Milk, Butter, Cheese}		_	
Τ4	{Bread, Milk, Eggs, Butter}	《曰》《卽》《言》《言》	÷	5/21

Support: Frequency of itemset occurrence

 $Support(X) = \frac{Transactions \text{ containing } X}{Total \text{ transactions}}$

Confidence: Strength of implication

$$\mathsf{Confidence}(X \Rightarrow Y) = \frac{\mathsf{Support}(X \cup Y)}{\mathsf{Support}(X)}$$

Lift: Measure of rule interestingness

$$\mathsf{Lift}(X \Rightarrow Y) = \frac{\mathsf{Confidence}(X \Rightarrow Y)}{\mathsf{Support}(Y)}$$

Interpretation

- **Support**: How often does the rule occur?
- **Confidence**: How reliable is the rule?
- Lift: How much better than random?
- **Lift** = 1: Independence
- Lift > 1: Positive correlation
- Lift < 1: Negative correlation

TID	Items	
1	{Bread, Milk}	
2	{Bread, Eggs}	
3	{Milk, Eggs}	
4	{Bread, Milk, Eggs}	
5	{Bread, Eggs}	

For rule: Bread \Rightarrow Eggs

Support({Bread}) =
$$\frac{4}{5}$$
 = 0.8 (1)
Support({Eggs}) = $\frac{4}{5}$ = 0.8 (2)
Support({Bread, Eggs}) = $\frac{3}{5}$ = 0.6 (3)
Confidence(Bread \Rightarrow Eggs) = $\frac{0.6}{0.8}$ = 0.75 (4)
Lift(Bread \Rightarrow Eggs) = $\frac{0.75}{0.8}$ = 0.9375 (5)
 $\frac{0.75}{7/21}$

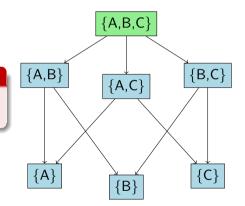
Purpose: Find all frequent itemsets efficiently **Key Principle - Apriori Property:**

Downward Closure

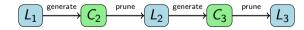
If an itemset is frequent, then all of its subsets are also frequent.

Contrapositive: If an itemset is infrequent, then all of its supersets are also infrequent.

This property allows us to prune the search space significantly!



- **Initialize:** Start with 1-itemsets
- **Organization Generate Candidates:** Create candidate k-itemsets from frequent (k-1)-itemsets
- Operation of the second state of the second
- **O Count Support:** Scan database to count support of candidates
- If iter: Keep only frequent itemsets (support ≥ min_support)
- O Repeat: Continue until no more frequent itemsets found



Apriori Algorithm Pseudocode

Algorithm

```
def apriori(transactions, min_support):
    # Step 1: Find frequent 1-itemsets
    L1 = find_frequent_1_itemsets(transactions, min_support)
   L = [L1]
   k = 2
    while L[k-2] is not empty:
        Ck = generate_candidates(L[k-2]) # Step 2: Generate candida.
        Ck = prune_candidates(Ck, L[k-2]) # Step 3: Prune candidates
        # Step 4: Count support
        for transaction in transactions:
            increment_count(Ck, transaction)
        # Step 5: Filter frequent itemsets
        Lk = filter_frequent(Ck, min_support)
        L.append(Lk)
        k += 1
    return L
```

Transaction Database:

TID	Items
100	{I1, I2, I5}
200	{I2, I4}
300	{I2, I3}
400	{I1, I2, I4}
500	{I1, I3}
600	{I2, I3}
700	{I1, I3}
800	{I1, I2, I3, I5}
900	{I1, I2, I3}

Parameters:

- Total transactions: 9
- Minimum support threshold: 2 (\approx 22.2%)

Candidate 1-itemsets (C₁):

Itemset	Support	
$\{ 1\}$	6	
{I2}	7	
{I3}	6	
{ I 4}	2	
{I5}	2	

Frequent 1-itemsets (L_1) :

Itemset	Support	
{I1}	6	
{I2}	7	
{13}	6	
{14}	2	
{ I5 }	2	

Result

All 1-itemsets are frequent (support \geq 2)

Candidate 2-itemsets (C₂):

Itemset	Support
{I1, I2}	4
{I1, I3}	4
$\{ 1, 4\}$	1
{ 1, 5 }	2
{I2, I3}	4
{I2, I4}	2
{I2, I5}	2
{I3, I4}	0
{I3, I5}	1
$\{14, 15\}$	0

Frequent 2-itemsets (L₂):

Itemset	Support	
{I1, I2}	4	
{I1, I3}	4	
{I1, I5}	2	
{12, 13}	4	
{12, 14}	2	
{I2, I5}	2	

・ロト ・四ト ・ヨト ・ヨト

Pruned: $\{11, 14\}, \{13, 14\}, \{13, 15\}, \{14, 15\} (support < 2)$

Step 3: Generate 3-Itemsets

Generate C_3 from L_2 :

- Join {I1, I2} and {I1, I3} \rightarrow {I1, I2, I3}
- \bullet Join {I1, I2} and {I1, I5} \rightarrow {I1, I2, I5}
- \bullet Join {I1, I3} and {I1, I5} \rightarrow {I1, I3, I5}
- \bullet Join {I2, I3} and {I2, I4} \rightarrow {I2, I3, I4}
- \bullet Join {I2, I3} and {I2, I5} \rightarrow {I2, I3, I5}
- \bullet Join {I2, I4} and {I2, I5} \rightarrow {I2, I4, I5}

After Pruning (C₃):

Itemset	Support	
{I1, I2, I3}	2	
{I1, I2, I5}	2	

Frequent 3-itemsets (L_3) :

Itemset	Support	
{I1, I2, I3}	2	
{I1, I2, I5}	2	

・ロト ・回ト ・ヨト ・ヨト ・ヨ

Note: Other candidates pruned because subsets not in L_2

From Frequent Itemsets to Rules

Process:

- For each frequent itemset *I*, generate all possible rules
- **2** For rule $X \Rightarrow Y$ where $X \cup Y = I$:
 - Calculate confidence = $\frac{\text{support}(I)}{\text{support}(X)}$
 - Keep rule if confidence \geq minimum confidence threshold

Example with $\{1, 12, 13\}$ (support = 2):

Rule	Confidence	Valid?
$\{I1\} \Rightarrow \{I2, I3\}$	$\frac{2}{6} = 0.33$	\checkmark
$\{I2\} \Rightarrow \{I1, I3\}$	$\frac{2}{7} = 0.29$	\checkmark
$\{I3\} \Rightarrow \{I1, I2\}$	$\frac{2}{6} = 0.33$	\checkmark
$\{I1,I2\}\Rightarrow\{I3\}$	$\frac{2}{4} = 0.50$	\checkmark
$\{I1,I3\}\Rightarrow\{I2\}$	$\frac{2}{4} = 0.50$	\checkmark
$\{I2, I3\} \Rightarrow \{I1\}$	$\frac{2}{4} = 0.50$	\checkmark

Assuming minimum confidence = 0.25

Real-World Applications

Retail & E-commerce:

- Product recommendation
- Store layout optimization
- Promotional strategies
- Inventory management

Entertainment:

- Movie/music recommendations
- Content bundling
- User behavior analysis

Success Story

♥ Healthcare:

- Drug interaction analysis
- Treatment pattern discovery
- Symptom correlation
- **Web Analytics:**
 - Website navigation patterns
 - Cross-selling opportunities
 - User session analysis

Amazon's "Customers who bought this item also bought" feature reportedly increases sales by $10\mathchar`30\%$

Advantages and Limitations

💧 Advantages:

- Easy to understand and interpret
- No need for labeled data
- Scalable to large datasets
- Provides actionable insights
- Well-established methodology

투 Limitations:

- Computationally expensive
- Generates many redundant rules
- Sensitive to parameter selection
- May miss rare but important patterns
- Assumes independence between transactions

Performance Considerations

- Time complexity: $O(2^n)$ in worst case
- Space complexity depends on number of frequent itemsets
- Multiple database scans required

Algorithm Variations

FP-Growth Algorithm:

- Uses FP-tree data structure
- Requires only 2 database scans
- More memory efficient
- Faster than Apriori for dense datasets

ECLAT (Equivalence Class Transformation):

- Uses vertical data representation
- Intersection-based approach
- Good for sparse datasets

Other Improvements:

- Hash-based itemset counting
- Transaction reduction
- Partitioning algorithms
- Sampling techniques

Beyond Support, Confidence, and Lift:

Conviction:

$$Conviction(X \Rightarrow Y) = \frac{1 - Support(Y)}{1 - Confidence(X \Rightarrow Y)}$$

Cosine Similarity:

$$\mathsf{Cosine}(X,Y) = \frac{\mathsf{Support}(X \cup Y)}{\sqrt{\mathsf{Support}(X) \times \mathsf{Support}(Y)}}$$

Jaccard Coefficient:

$$\mathsf{Jaccard}(X, Y) = \frac{\mathsf{Support}(X \cup Y)}{\mathsf{Support}(X) + \mathsf{Support}(Y) - \mathsf{Support}(X \cup Y)}$$

These metrics help identify truly interesting and non-redundant rules.

Key Takeaways

Association Rules

- Powerful technique for discovering relationships in transactional data
- Foundation of market basket analysis and recommendation systems
- Uses support, confidence, and lift as key measures

Apriori Algorithm

- Systematic approach to finding frequent itemsets
- Leverages downward closure property for efficiency
- Generates candidate itemsets level by level

Practical Impact

- Widely used in retail, e-commerce, and web analytics
- Drives billions of dollars in additional revenue
- Continues to evolve with new algorithms and applications

Next Steps

What's Coming Next:

- Clustering algorithms (K-means, Hierarchical)
- Dimensionality reduction techniques
- Anomaly detection methods

Practice Exercises:

- Implement Apriori algorithm from scratch
- Analyze real transaction datasets
- Compare different interestingness measures
- Optimize algorithm performance



イロン 不良 とうほう イロン 一日