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Background

Sequence data analysis :

Studies of Alterations in the protein sequence to classify and predict amino acid changes
in SARS-CoV-2 are crucial in

Understanding the immune invasion and host-to-host transmission properties of SARS-CoV-2
and its variants
Identifying transmission patterns of each variant may help policymakers to prevent the rapid
spread
May help in vaccine design and efficacy

Unravel the mysteries of genetic info & its functional implications

Methods :

Phylogenetic tree construction-based methods - a Traditional way to trace evolution.

Later Machine Learning and Deep Learning played a major role
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Motivation

Improve performance and reduce computational cost.

Insights into the evolutionary relationships between organisms, helping us understand the
origins and diversity of life on Earth.

Advancements in personalized medicine, identifying genetic variants associated with
diseases and predicting patient responses to treatments.

Sarwan Ali (Georgia State University) Molecular Sequence Analysis June 24, 2024 4 / 56



Real World Application

Genomic surveillance: Tracking the spread of
pathogens in terms of genomic content

Real time identification of new and rapidly
emerging coronavirus variants

Track the spread of known coronavirus variants in
new municipalities, regions, countries and
continents
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Figure: Month-wise relative frequency of each variant. We observed the relative frequencies of variants
for different months separately (from December 2020 to June 2021).
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Statistical Analysis

We compute Information Gain (IG) between each attribute (amino acid position) and the class
(variant). The IG is defined as

IG (Class, position) = H(Class)− H(Class|position) (1)

where H =
∑

i∈Class −pi log pi is the entropy, and pi is the probability of the class i .

Figure: IG for AA with respect to variants. The x-axis corresponds to AA positions in a spike sequence.
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Categories of Solutions

1 Kernel-based Methods

2 Embedding-based methods

3 Sequence-to-Image transformation
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Challenges

For enabling ML/DL-based analysis, biological sequences need to be transformed into
numerical representations.

But usually the numerical feature embedding generation methods undergo sparsity and
curse of dimensionality challenges.

State-of-the-Art DL classifiers perform suboptimal on tabular data compared to
tree-based methods due to their interpretability, robustness, efficiency, and feature
handling capabilities..
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Problems

Variable lengths of sequences

Capturing both local and global structures

Traditional methods (e.g. Phylogenetic Trees) are computationally expensive

Mutations happen disproportionally
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Kernel-based Solution

k-spectrum and k ,m-mismatch kernel: Given a sequence X over alphabet Σ, the
k ,m-mismatch spectrum of X is a |Σ|k -dimensional vector, Φk,m(X ) of number of times each
possible k-mer occurs in X with at most m mismatches. Formally,

Φk,m(X ) = (Φk,m(X )[γ])γ∈Σk =

(∑
α∈X

Im(α, γ)

)
γ∈Σk

, (2)

where Im(α, γ) = 1, if α belongs to the set of k-mers that differ from γ by at most m
mismatches, i.e. the Hamming distance between α and γ, d(α, γ) ≤ m. Note that for m = 0,
it is known as k-spectrum of X .
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Kernel-based Solution

X = {CGTAAGTCAGTCATGAACGG}

for m = 1, considering the case of CG∗

|∑ |k

|∑ |k
Figure: The (k)-spectrum (top) and (k ,m)-mismatch spectrum (bottom) for a DNA sequence X with
|X | = 20, Σ = {A,C ,G ,T}, k = 3 and m = 1 are shown. For a selected k-mer = CGT , the
(k)-spectrum computes the exact occurrences of the k-mer in X . The (k,m)-mismatch spectrum
counts the occurrences of the k-mer in X up to Hamming distance of m = 1. We show a particular
scenario of CG∗, where ∗ ∈ Σ in this case.

Sarwan Ali (Georgia State University) Molecular Sequence Analysis June 24, 2024 11 / 56



Dataset

Lineages Region Labels
No.
Mut.
S/Gen.

No. of sequences

GISAID-
1

GISAID-
2

B.1.1.7 UK [1] Alpha 8/17 3369 3397
B.1.617.2 India [2] Delta 8/17 875 878
AY.4 India [3] Delta - 593 516
B.1.2 - - - 333 350
B.1 292 276
B.1.177 Spain [4] - - 243 281
P.1 Brazil [5] Gamma10/21 194 201
B.1.1 - - 163 166
B.1.429 California Epsilon 3/5 107 142
B.1.526 New York [6] Iota 6/16 104 82
AY.12 India [3] Delta - 101 82
B.1.160 - - - 92 88
B.1.351 South Africa [1] Beta 9/21 81 62
B.1.427 California [7] Epsilon 3/5 65 62
B.1.1.214 - - - 64 64
B.1.1.519 - - - 56 88
D.2 - - - 55 45
B.1.221 - - - 52 41
B.1.177.21- - - 47 56
B.1.258 - - - 46 42
B.1.243 - - - 36 40
R.1 - - - 32 41

Total - - - 7000 7000

Table: Dataset statistics for 22 variants. The character ‘-’ means that information not available.Sarwan Ali (Georgia State University) Molecular Sequence Analysis June 24, 2024 12 / 56



Results (GISAID 1)

Acc. Prec. Recall F1
(Weig.)

F1
(Macro)

ROC AUC Train Time
(Sec.)

Kernel
Method

SVM 0.84 ±
0.0016

0.83 ±
0.0045

0.84 ±
0.0016

0.82 ±
0.0026

0.63 ±
0.0120

0.81 ±
0.0040

7.35 ±
0.2239

NB 0.75 ±
0.0073

0.82 ±
0.0072

0.75 ±
0.0082

0.77 ±
0.0076

0.6 ±
0.0133

0.82 ±
0.0088

0.17 ±
0.2408

MLP 0.83 ±
0.0038

0.82 ±
0.0517

0.83 ±
0.0038

0.82 ±
0.0052

0.62 ±
0.0173

0.81 ±
0.0068

12.65 ±
0.0140

KNN 0.82 ±
0.0099

0.82 ±
0.0063

0.82 ±
0.0099

0.82 ±
0.0084

0.62 ±
0.0245

0.79 ±
0.0135

0.32 ±
1.2661

RF 0.84 ±
0.0056

0.84 ±
0.0082

0.84 ±
0.0056

0.83 ±
0.0066

0.66 ±
0.0121

0.82 ±
0.0045

1.46 ±
0.0126

LR 0.84 ±
0.0041

0.84 ±
0.0042

0.84 ±
0.0041

0.82 ±
0.0055

0.62 ±
0.0294

0.81 ±
0.0148

1.86 ±
0.0378

DT 0.82 ±
0.0086

0.82 ±
0.0096

0.82 ±
0.0086

0.82 ±
0.0088

0.63 ±
0.0207

0.82 ±
0.0124

0.24 ±
0.0102

Sarwan Ali (Georgia State University) Molecular Sequence Analysis June 24, 2024 13 / 56



Results (GISAID 2)

Acc. Prec. Recall F1
(Weig.)

F1
(Macro)

ROC AUC Train Time
(Sec.)

Kernel
Method

SVM 0.85 ±
0.0023

0.85 ±
0.0043

0.85 ±
0.0021

0.84 ±
0.0030

0.63 ±
0.0132

0.81 ±
0.0040

5.06 ±
0.2591

NB 0.75 ±
0.0101

0.81 ±
0.0069

0.75 ±
0.0106

0.76 ±
0.0091

0.58 ±
0.0147

0.8 ±
0.0086

0.11 ±
0.2787

MLP 0.85 ±
0.0053

0.84 ±
0.0491

0.85 ±
0.0049

0.83 ±
0.0061

0.66 ±
0.0191

0.83 ±
0.0067

15.92 ±
0.1644

KNN 0.82 ±
0.0137

0.82 ±
0.0060

0.82 ±
0.0128

0.82 ±
0.0100

0.62 ±
0.0271

0.79 ±
0.0133

0.29 ±
2.4294

RF 0.85 ±
0.0078

0.85 ±
0.0078

0.85 ±
0.0073

0.84 ±
0.0078

0.66 ±
0.0134

0.82 ±
0.0044

1.49 ±
0.1017

LR 0.85 ±
0.0057

0.84 ±
0.0040

0.85 ±
0.0053

0.83 ±
0.0066

0.6 ±
0.0325

0.81 ±
0.0146

1.76 ±
0.1108

DT 0.83 ±
0.0119

0.83 ±
0.0091

0.83 ±
0.0111

0.82 ±
0.0104

0.63 ±
0.0228

0.81 ±
0.0122

0.25 ±
0.0850
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Kernel-based Solution (Using Minimizer)
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Results (GISAID 1)

Acc. Prec. Recall F1
(Weig.)

F1
(Macro)

ROC AUC Train Time
(Sec.)

Kernel
Method

SVM 0.85 ±
0.0015

0.83 ±
0.0041

0.85 ±
0.0015

0.83 ±
0.0023

0.62 ±
0.0110

0.81 ±
0.0037

33.9 ±
0.2053

NB 0.74 ±
0.0067

0.8 ±
0.0066

0.74 ±
0.0075

0.76 ±
0.0070

0.59 ±
0.0122

0.8 ±
0.0080

0.13 ±
0.2208

MLP 0.83 ±
0.0035

0.82 ±
0.0474

0.83 ±
0.0035

0.82 ±
0.0047

0.61 ±
0.0158

0.8 ±
0.0062

21.77 ±
0.0128

KNN 0.81 ±
0.0091

0.81 ±
0.0058

0.81 ±
0.0091

0.8 ±
0.0077

0.63 ±
0.0225

0.8 ±
0.0124

0.31 ±
1.1609

RF 0.862 ±
0.0052

0.85 ±
0.0075

0.862 ±
0.0052

0.84 ±
0.0060

0.67 ±
0.0111

0.83 ±
0.0041

1.54 ±
0.0116

LR 0.85 ±
0.0038

0.84 ±
0.0039

0.85 ±
0.0038

0.83 ±
0.0051

0.63 ±
0.0270

0.81 ±
0.0136

2.99 ±
0.0346

DT 0.83 ±
0.0078

0.83 ±
0.0088

0.83 ±
0.0078

0.82 ±
0.0080

0.63 ±
0.0190

0.81 ±
0.0113

0.23 ±
0.0094
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Results (GISAID 2)

Acc. Prec. Recall F1
(Weig.)

F1
(Macro)

ROC AUC Train Time
(Sec.)

Kernel
Method

SVM 0.86 ±
0.0018

0.86 ±
0.0052

0.86 ±
0.0026

0.85 ±
0.0034

0.67 ±
0.0156

0.83 ±
0.0060

46.7 ±
0.4012

NB 0.71 ±
0.0079

0.79 ±
0.0083

0.71 ±
0.0132

0.73 ±
0.0102

0.49 ±
0.0173

0.75 ±
0.0129

0.12 ±
0.4315

MLP 0.85 ±
0.0042

0.85 ±
0.0593

0.85 ±
0.0061

0.83 ±
0.0069

0.64 ±
0.0225

0.82 ±
0.0100

30.54 ±
0.1191

KNN 0.83 ±
0.0108

0.85 ±
0.0073

0.83 ±
0.0159

0.83 ±
0.0112

0.64 ±
0.0319

0.82 ±
0.0199

0.27 ±
3.7619

RF 0.86 ±
0.0061

0.86 ±
0.0094

0.86 ±
0.0090

0.84 ±
0.0087

0.65 ±
0.0158

0.82 ±
0.0066

1.43 ±
0.1574

LR 0.87 ±
0.0045

0.87 ±
0.0049

0.87 ±
0.0066

0.86 ±
0.0073

0.69 ±
0.0383

0.84 ±
0.0218

3.1 ± 0.1716

DT 0.86 ±
0.0093

0.86 ±
0.0110

0.86 ±
0.0137

0.85 ±
0.0117

0.68 ±
0.0269

0.83 ±
0.0182

0.19 ±
0.1317
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Embedding-based Solution (Position Weight Matrix)
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Embedding-based Solution (Position Weight Matrix)
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Dataset

Host Name # of Sequences Host Name # of Sequences

Humans 1813 Rats 26
Environment 1034 Pangolins 21

Weasel 994 Hedgehog 15
Swine 558 Dolphin 7
Birds 374 Equine 5
Camels 297 Fish 2
Bats 153 Unknown 2
Cats 123 Python 2

Bovines 88 Monkey 2
Dogs 40 Cattle 1
Turtle 1

Table: Dataset Statistics for 5558 coronavirus hosts.
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Results

Method ML.
Algo.

Acc. Prec. Recall F1
(Weig.)

ROC
AUC

Train
Time
(Sec.)

PSSMFreq2Vec

SVM 0.83 0.83 0.83 0.82 0.81 50.72
NB 0.64 0.74 0.64 0.61 0.75 5.90
MLP 0.83 0.82 0.83 0.83 0.77 33.44
KNN 0.80 0.80 0.80 0.80 0.75 65.20
RF 0.84 0.85 0.84 0.83 0.81 11.42
LR 0.84 0.85 0.84 0.84 0.81 57.55
DT 0.81 0.82 0.81 0.80 0.79 7.50

PSSM2Vec

SVM 0.78 0.79 0.78 0.76 0.85 1.81
NB 0.60 0.62 0.60 0.57 0.77 0.15
MLP 0.81 0.81 0.81 0.80 0.89 13.70
KNN 0.82 0.82 0.82 0.81 0.87 0.66
RF 0.86 0.86 0.86 0.85 0.91 1.43
LR 0.73 0.75 0.73 0.70 0.78 1.91
DT 0.82 0.82 0.82 0.82 0.89 0.20
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Results
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Figure: Correlation values for Coronavirus Host data. (a) and (b) show the fraction of features having
correlation values greater than or less than the thresholds (on x-axis). The fractions are computed by
taking denominator as the size of embeddings (69960 for OHE, 8000 for Spike2Vec, 3490 for
PWM2Vec, 8000 for PSSMFreq2Vec, and 60 for PSSM2Vec).
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Results
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Figure: Runtime comparison for different embedding methods with increasing number of sequences
using Random Forest classifier (best performing classifier). The figure is best seen in color.
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Sequence-to-Image Transformation

We propose Chaos Game Representation-based method, which is an efficient way to
convert sequences into images.

Our proposed embedding method is alignment-free and could improve the “area of
interest” within the image by performing biologically meaningful manipulation of a
sequence first and then mapping the manipulated sequence into an image

Sarwan Ali (Georgia State University) Molecular Sequence Analysis June 24, 2024 24 / 56



Chaos Game Representation (CGR)

(a) CGR-based allocation. (b) 3-mers for a protein sequence (c) 20-flakes for protein sequence.

(a) illustrates the CGR-based space allocation for a given k-mer in the respective image.(b)
shows an example of 3-mers from a given sequence. (c) shows an example of 20-flakes for
protein sequences.
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Chaos Game Representation (CGR)

CGR is used to convert sequences into images. Works well for nucleotide sequences.

FCGR follows CGR to get images of protein sequences.

Get the x and y axis for an amino acid i using the given equations:

x [i ] = r · sin(2πi
n

+ θ) (3)

Here, r is a scaling factor that determines the size of the image, i is the position of the
amino acid in the sequence, n is the total number of amino acids in the sequence, and θ is an
angle parameter that affects the orientation of the image.

y [i ] = r · cos(2πi
n

+ θ) (4)

These equations create a positional mapping of amino acids in a protein sequence onto a
2D plane, allowing the visualization of protein sequences as images. The values of r and θ
can be adjusted to modify the appearance and characteristics of the resulting images.
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Chaos Game Representation (CGR)

Sine and cosine are periodic functions with a period of 2π. This means they repeat their
values in a regular interval, which is useful for creating repeating patterns in fractals.

The periodic nature ensures that as i (the index of the current amino acid) changes, the
points cycle through positions around the circle, leading to a coherent and continuous
pattern.

Angle Variation: The angle inside the sin and cos functions (2πin + θ) controls the
variation of positions along the circular pattern. Here: 2πi

n divides the circle into n equal
parts based on the position of the amino acid i in the sequence. θ introduces an
additional angle parameter that can rotate or shift the circular pattern, allowing for
variations in the resulting image orientation.
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Chaos Game Representation (CGR)

Spatial Distribution: By combining sin and cos with the angle parameters, the equations
generate a spatial distribution of points that covers the 2D space effectively. The use of
trigonometric functions helps distribute the points evenly along the circular or spiral path,
ensuring a balanced representation of the sequence.

Scaling and Orientation: The scaling factor r in front of sin and cos determines the size
of the circular pattern or spiral. A larger r value results in a larger pattern, while a smaller
r value creates a tighter and more condensed pattern. The angle parameter θ allows for
the adjustment of the image’s orientation. By changing θ, we can rotate or shift the
circular/spiral pattern, providing flexibility in the visual representation of the sequence.
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Spike2CGR

Figure: Workflow of Spike2CGR for a given sequence. For a given spike sequence, steps from (a) to (d)
are followed to generate the corresponding Spike2CGR sequence.
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Spike2CGR (Image Transformation)

(a) Chaos (b) Spike2Vec (c) PWM2Vec (d) Minimizer (e) Spike2CGR

Figure: Graphical representation of a spike sequence of B.1.351 variant (from SARS-CoV-2 dataset)
using different methods. Some of the major changes in the images (area of interest) are highlighted
using the red boxes.
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Classification Models

Two types of classification models are used:

Tabular Models: 3-layer Tab CNN & 4-layer Tab CNN
Vision Models: CNN, RESNET (pre-trained), VGG-19 (pre-trained).

Figure: The architectures of the 4-layer CNN model. Here ker represents kernel and str represents stride
filter size.
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Dataset

Lineage Region Labels No. Mut. S/Gen.
No. of sequences

Training Validation Testing

B.1.1.7 UK [1] Alpha 8/17 9930 2527 3146
B.1.617.2 India [2] Delta 8/17 1877 450 456
P.2 Brazil [8] Zeta 3/7 1780 432 533
B.1.429 California Epsilon 3/5 1079 256 326
P.1 Brazil [5] Gamma 10/21 994 245 306
B.1.526 New York [6] Iota 6/16 847 219 255
B.1.351 South Africa [1] Beta 9/21 837 221 258
B.1.427 California [7] Epsilon 3/5 835 218 268
B.1.1.529 South Africa Omicron 34/53 747 178 253
C.37 Peru [8] Lambda 8/21 732 169 228
B.1.621 Colombia [8] Mu 9/21 717 168 219
B.1.525 UK and Nigeria Eta 8/16 714 187 224
P.3 Philippines [8] Theta 8/17 111 30 34

Total 21200 5300 6238

Table: Dataset statistics for different coronavirus variants (32738 in total).
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Results

DL Model Method Acc. ↑ Prec. ↑ Recall ↑ F1
(Weig.)
↑

F1
(Macro)
↑

ROC
AUC ↑

Train
Time
(hrs.) ↓

3-Layer
Tab CNN

OHE [9] 0.472 0.301 0.472 0.368 0.060 0.552 0.594
WDGRL [10] 0.636 0.457 0.636 0.523 0.263 0.594 0.380

4-Layer
Tab CNN

OHE [9] 0.637 0.469 0.637 0.528 0.157 0.511 0.977
WDGRL [10] 0.688 0.517 0.688 0.582 0.227 0.637 0.866

1-Layer
CNN

Chaos [11] 0.700 0.680 0.696 0.651 0.563 0.673 8.195
Spike2Vec [12] 0.733 0.690 0.733 0.679 0.679 0.850 7.779
PWM2Vec [13] 0.734 0.676 0.734 0.691 0.697 0.844 5.744
Minimizer 0.743 0.707 0.743 0.709 0.709 0.832 6.171
Spike2CGR 0.719 0.730 0.766 0.739 0.717 0.840 4.992

% improv. of
Spike2CGR from
SOTA Chaos [11]

1.9 5 7 8.8 15.8 16.7 39.08
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Results

DL Model Method Acc. ↑ Prec. ↑ Recall ↑ F1
(Weig.)
↑

F1
(Macro)
↑

ROC
AUC ↑

Train
Time
(hrs.) ↓

2-Layer
CNN

Chaos [11] 0.700 0.669 0.697 0.652 0.564 0.645 6.394
Spike2Vec [12] 0.740 0.730 0.744 0.729 0.736 0.725 7.329
PWM2Vec [13] 0.740 0.700 0.739 0.688 0.694 0.676 6.615
Minimizer 0.710 0.710 0.710 0.681 0.581 0.771 6.426
Spike2CGR 0.633 0.577 0.633 0.559 0.376 0.663 6.193

% improv. of
Spike2CGR from
SOTA Chaos [11]

-6.7 -9.2 -6.4 -9.3 -18 .8 1.8 3.14
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Results

DL Model Method Acc. ↑ Prec. ↑ Recall ↑ F1
(Weig.)
↑

F1
(Macro)
↑

ROC
AUC ↑

Train
Time
(hrs.) ↓

3-Layer
CNN

Chaos [11] 0.740 0.722 0.739 0.717 0.696 0.809 5.658
Spike2Vec [12] 0.750 0.723 0.750 0.715 0.725 0.838 6.919
PWM2Vec [13] 0.751 0.715 0.751 0.716 0.732 0.846 7.458
Minimizer 0.750 0.729 0.750 0.721 0.719 0.851 6.332
Spike2CGR 0.770 0.724 0.767 0.734 0.712 0.845 4.758

% improv. of
Spike2CGR from
SOTA Chaos [11]

3 0.2 2.8 1.7 1.6 3.6 31.23
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Results

DL Model Method Acc. ↑ Prec. ↑ Recall ↑ F1
(Weig.)
↑

F1
(Macro)
↑

ROC
AUC ↑

Train
Time
(hrs.) ↓

4-Layer
CNN

Chaos [11] 0.740 0.686 0.737 0.706 0.678 0.728 7.986
Spike2Vec [12] 0.750 0.686 0.749 0.712 0.720 0.842 7.447
PWM2Vec [13] 0.750 0.733 0.745 0.736 0.747 0.847 7.720
Minimizer 0.750 0.726 0.750 0.706 0.709 0.846 7.068
Spike2CGR 0.7708 0.731 0.768 0.738 0.714 0.843 10.658

% improv. of
Spike2CGR from
SOTA Chaos [11]

3 4.5 3.1 3.2 3.6 11.5 -33.45
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Results

DL Model Method Acc. ↑ Prec. ↑ Recall ↑ F1
(Weig.)
↑

F1
(Macro)
↑

ROC
AUC ↑

Train
Time
(hrs.) ↓

RESNET50
Pre-
Trained
Model

Chaos [11] 0.680 0.644 0.676 0.641 0.547 0.743 10.654
Spike2Vec [12] 0.711 0.657 0.710 0.666 0.644 0.759 10.746
PWM2Vec [13] 0.680 0.589 0.675 0.606 0.507 0.757 10.264
Minimizer 0.723 0.665 0.723 0.673 0.647 0.802 11.732
Spike2CGR 0.740 0.661 0.736 0.683 0.626 0.780 14.299

% improv. of
Spike2CGR from
SOTA Chaos [11]

6 -1.7 6 4.2 7.9 3.7 -34.21
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Results

DL Model Method Acc. ↑ Prec. ↑ Recall ↑ F1
(Weig.)
↑

F1
(Macro)
↑

ROC
AUC ↑

Train
Time
(hrs.) ↓

VGG-19
Pre-
Trained
Model

Chaos [11] 0.480 0.233 0.483 0.315 0.050 0.500 27.398
Spike2Vec [12] 0.470 0.221 0.470 0.301 0.049 0.500 26.599
PWM2Vec [13] 0.464 0.215 0.464 0.294 0.048 0.500 23.781
Minimizer 0.480 0.227 0.477 0.308 0.496 0.500 24.459
Spike2CGR 0.495 0.245 0.495 0.327 0.050 0.500 24.355

% improv. of
Spike2CGR from
SOTA Chaos [11]

1.5 1.2 1.2 1.2 0 0 8.4
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Results

(a) Chaos (b) Spike2CGR
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Molecular Properties (Weights)

Kyte and Doolittle (KD) Hydropathy Scale

Assigns numerical values to amino acids based on their hydrophobicity/hydrophilicity, used in
predicting protein structure and function.

Eisenberg Hydrophobicity Scale

Quantifies the hydrophobicity of amino acids, aiding in protein structure prediction and
understanding protein interactions with hydrophobic environments.

Hydrophilicity Scale

Measures the propensity of amino acids to interact with water, crucial for understanding
protein solubility, folding, and function in aqueous environments.

Flexibility Of The Characters

Evaluates the flexibility or rigidity of amino acids, important for predicting protein dynamics,
conformational changes, and flexibility in molecular interactions.

Hydropathy Scale

Ranks amino acids based on their hydrophobic or hydrophilic nature, assisting in studying
protein folding, membrane protein structure, and transmembrane domains.
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Workflow

Figure: Workflow of the proposed method for creating an image of a sequence.
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Dataset

Rabies Sequence Length Number of Sequences

Host Name Count Min. Max. Average Training Validation Testing

Canis Familiaris 9065 90 11928 1600.50 5802 1450 1813
Bos Taurus 2497 117 11928 995.29 1599 399 499
Vulpes Vulpes 2221 133 11930 2923.77 1422 355 444
Felis Catus 1125 90 11928 1634.43 720 180 225
Procyon Lotor 884 291 11926 6763.80 567 141 176
Desmodus Rotundus 875 164 11923 1051.50 560 140 175
Mephitis Mephitis 864 220 11929 1266.59 554 138 172
Homo Sapiens 838 101 11928 1537.85 537 134 167
Eptesicus Fuscus 718 264 11924 1144.35 460 115 143
Skunk 492 211 11928 6183.26 316 78 98
Tadarida Brasiliensis 270 264 11923 1175.67 173 43 54
Equus Caballus 202 163 11924 1376.74 130 32 40

Total 20051 - - - - - -

Table: Dataset Statistics for Rabies data.
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Baselines

Feature-engineering-based methods

One Hot Encoding (OHE): created embeddings are sparse and face curse of dimensionality
challenge.
Wasserstein Distance Guided Representation Learning (WDGRL): require large training data
for optimal performance.
Position Specific Scoring Matrix (PSSM)

Image-based method

Frequency Matrix-based Chaos Game Representation (FCGR): 1-to-1 mapping between the
amino acids and pixels.
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Results

Method Acc. ↑ Prec. ↑ Recall ↑ F1 (Weig.) ↑ F1 (Macro) ↑ ROC
AUC ↑

Train Time
(Sec.) ↓

NB
OHE 0.124 0.447 0.124 0.134 0.195 0.585 979.44
WDGRL 0.514 0.441 0.514 0.410 0.184 0.575 0.01
PSSM2Vec 0.125 0.296 0.125 0.072 0.105 0.58 0.04

3 Layer
Tab
CNN

OHE 0.451 0.203 0.451 0.280 0.050 0.500 4191.34
WDGRL 0.450 0.202 0.450 0.279 0.049 0.500 1737.65
PSSM2Vec 0.452 0.204 0.452 0.281 0.051 0.500 2040.81

4 Layer
Tab
CNN

OHE 0.452 0.204 0.452 0.281 0.051 0.500 5974.26
WDGRL 0.535 0.318 0.535 0.395 0.103 0.500 964.97
PSSM2Vec 0.450 0.204 0.450 0.282 0.052 0.500 3790.09

ViT

Chaos 0.448 0.201 0.448 0.277 0.051 0.500 2943.45
KD 0.440 0.194 0.440 0.269 0.050 0.500 3593.00
Eisen. 0.465 0.216 0.465 0.295 0.052 0.500 3474.12
Flex. 0.441 0.194 0.441 0.270 0.051 0.500 3035.72
Hydrophil. 0.455 0.207 0.455 0.285 0.052 0.500 2829.95
Hydropathy 0.449 0.201 0.449 0.278 0.051 0.500 3029.90

CNN

Chaos 0.780 0.763 0.780 0.767 0.662 0.813 12505.91
KD 0.771 0.757 0.771 0.756 0.647 0.807 13331.11
Eisen. 0.787 0.779 0.787 0.773 0.668 0.810 14127.47
Flex. 0.775 0.763 0.775 0.758 0.647 0.807 13068.88
Hydrophil. 0.785 0.770 0.785 0.774 0.659 0.817 14286.38
Hydropathy 0.773 0.766 0.773 0.765 0.653 0.809 13115.00

Pretrain

Chaos 0.202 0.365 0.202 0.230 0.081 0.500 146831.05
KD 0.210 0.370 0.210 0.229 0.079 0.510 147221.45
Eisen. 0.284 0.451 0.284 0.364 0.095 0.530 161828.01
Flex. 0.274 0.441 0.274 0.387 0.087 0.500 144477.50
Hydrophil. 0.283 0.431 0.283 0.363 0.093 0.521 150921.41
Hydropathy 0.252 0.331 0.252 0.323 0.073 0.500 142441.85

Table: The top 2 best values for each evaluation metric are shown in bold.
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Results

(a) Chaos (b) Eisenberg (c) S.M. Chaos (d) S.M. Eisenberg

Figure: Images generated using Chaos and Eisenberg encoding techniques for a sequence against
Cytoplasm location from protein subcellular dataset along with their respective Saliency Maps (S.M.).
Some of the major differences between the original images are indicated using the red boxes. The blue
color in the saliency maps indicates the most importance. This figure is best seen in colors.
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Results

(a) Chaos (b) Eisenberg

Figure
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Bézier curves

The general formula [14] of the Bézier curve is

BZ (t) = Σn
i=0

(n
i

)
t i (1− t)n−iPi (5)

where 0 ≤ t ≤ 1, Pi are known as control points and are elements of Rk , and k ≤ n.
To construct the protein images, we employ a Bézier curve with n = 3 and k = 2. As images
consist of x and y coordinates, therefore k = 2 is used. The formulas to determine the
coordinates for representing an amino acid in the respective generated image are,

x = (1− t)3 · P0x + 3 · (1− t)2 · t · P1x + 3 · (1− t) · t2 · P2x + t3 · P3x (6)

y = (1− t)3 · P0y + 3 · (1− t)2 · t · P1y + 3 · (1− t) · t2 · P2y + t3 · P3y (7)
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Bézier curves

Input: Sequence seq, No. of Parameters m
Output: Image img

1: conPoint = {} ▷ dictionary for control points

2: for i, aa ∈ seq do: ▷ every unique amino acid aa in seq

3: conPoint[aa] = [i, ASCII (aa)] ▷ assign control point the index i and ASCII of aa

4: xCord = [] ▷ list for x coordinates

5: yCord = [] ▷ list for y coordinates

6: t Val = Get m pairs ∈ [0, 1] ▷ list of m pairs of parameters

7: ite = 3 ▷ no. of deviations pair points. It can have any value.

8: for a ∈ seq : do ▷ every amino acid a in seq

9: org point = conPoint[a] ▷ control point of a

10: points = [org point]

11: for i ∈ (ite) : do

12: dev = Get Random Pair ▷ get a random pair

13: mod point = org point + dev ▷ get a modified control point

14: points.append(mod point)

15: curve point = Get Bezier Point(points, t Val) ▷ get bezier curve points from bezier func

16: xCord = curve point[:0] ▷ get x coords of curve

17: yCord = curve point[:1] ▷ get y coords of curve

18: img = plot(xCord , yCord) ▷ get image by plotting x & y coords

19: return(img)
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Bézier curves

Figure: The workflow of our system to create an image from a given sequence and a number of
parameters m. We have used ”MAVM” as an input sequence here. Note that the cur Pts consists of a
set of values for x coordinates and y coordinates.
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Bézier curves

(a) Active ACP (b) Inactive ACP

Figure: The Bézier curve method-based images created for two sequences from the ACP dataset. One
sequence belongs to the active class of the dataset, while the other is from the inactive class.

Sarwan Ali (Georgia State University) Molecular Sequence Analysis June 24, 2024 50 / 56



Dataset

Protein Subcellular Sequence Length

Subcellular Locations Count Min. Max. Average

Cytoplasm 1411 9 3227 337.32
Plasma Membrane 1238 47 3678 462.21
Extracellular Space 843 22 2820 194.01
Nucleus 837 16 1975 341.35
Mitochondrion 510 21 991 255.78
Chloroplast 449 71 1265 242.03
Endoplasmic Reticulum 198 79 988 314.64
Peroxisome 157 21 906 310.75
Golgi Apparatus 150 116 1060 300.70
Lysosomal 103 101 1744 317.81
Vacuole 63 60 607 297.95

Total 5959 - - -
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Results

Category DL Model Method Acc. ↑ Prec. ↑ Recall ↑ F1
(Weig.)
↑

F1
(Macro)
↑

ROC
AUC ↑

Train
Time
(hrs.) ↓

Vision Transformer

ViT

FCGR 0.226 0.051 0.226 0.083 0.033 0.500 0.180
RandmCGR 0.222 0.049 0.222 0.080 0.033 0.500 0.154
Spike2CGR 0.222 0.051 0.222 0.083 0.147 0.500 0.176
Bézier 0.462 0.254 0.462 0.327 0.147 0.572 0.160

% improv. of Bézier
from FCGR

23.6 20.3 23.6 24.4 11.4 7.2 11.11

% impro. of Bézier from
Spike2CGR

24 20.3 24 24.4 0 7.2 -9.09

Pretrained Vision Models

ResNet-
50

FCGR 0.368 0.268 0.368 0.310 0.155 0.556 3.831
RandmCGR 0.293 0.174 0.293 0.211 0.102 0.527 13.620
Spike2CGR 0.368 0.175 0.368 0.214 0.105 0.565 10.992
Bézier 0.964 0.967 0.964 0.961 0.907 0.948 11.415

% improv. of Bézier
from FCGR

59.6 69.9 59.6 65.1 75.2 39.2 -197.96

% impro. of Bézier from
Spike2CGR
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Results

Category DL Model Method Acc. ↑ Prec. ↑ Recall ↑ F1
(Weig.)
↑

F1
(Macro)
↑

ROC
AUC ↑

Train
Time
(hrs.) ↓

Pretrained Vision Models

VGG-19

FCGR 0.316 0.209 0.316 0.241 0.114 0.533 14.058
RandmCGR 0.288 0.192 0.288 0.218 0.105 0.525 26.136
Spike2CGR 0.351 0.352 0.351 0.333 0.211 0.550 19.980
Bézier 0.896 0.879 0.896 0.873 0.680 0.840 18.837

% improv. of Bézier
from FCGR

58 67 58 63.2 56.6 30.7 -33.99

% impro. of Bézier from
Spike2CGR

54.5 52.7 54.5 56.3 46.9 29 5.7

EfficientNet

FCGR 0.100 0.088 0.100 0.094 0.035 0.532 31.194
RandmCGR 0.284 0.107 0.284 0.152 0.078 0.500 30.223
Spike2CGR 0.320 0.230 0.320 0.230 0.200 0.500 25.497
Bézier 0.834 0.787 0.834 0.797 0.483 0.751 20.312

% improv. of Bézier
from FCGR

73.4 69.9 73.4 70.3 44.8 21.9 34.88
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Conclusion and Future Work

We discuss different methods of molecular sequence analysis.

Using sequence-to-image transformation, we enable the vision models to be used for
sequence classification.

Future Work

Try on larger data to evaluate the scalability.

Employ other methods like spaced minimizers to get the images.
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Thank You



Feel Free To Contact Me

Website: https://sarwanpasha.github.io/

Google Scholar:
https://scholar.google.com/citations?user=9dtXSoAAAAAJ&hl=en
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