

Molecular Sequence Analysis And Role of Al Sarwan Ali

Georgia State University June 24, 2024

Sarwan Ali (Georgia State University)

Molecular Sequence Analysis

June 24, 2024

▶ < ∃ ▶</p>

Background

2 Motivation

3 Challenges

4 Methodology

5 Chaos Game Representation (CGR)

6 Dataset

Results

8 Conclusion and Future Work

< ∃ >

Sequence data analysis :

- Studies of Alterations in the protein sequence to classify and predict amino acid changes in SARS-CoV-2 are crucial in
 - Understanding the immune invasion and host-to-host transmission properties of SARS-CoV-2 and its variants
 - Identifying transmission patterns of each variant may help policymakers to prevent the rapid spread
 - May help in vaccine design and efficacy
- Unravel the mysteries of genetic info & its functional implications

 $\mathsf{Methods}:$

- Phylogenetic tree construction-based methods a Traditional way to trace evolution.
- Later Machine Learning and Deep Learning played a major role

▶ < ⊒ ▶

- Improve performance and reduce computational cost.
- Insights into the evolutionary relationships between organisms, helping us understand the origins and diversity of life on Earth.
- Advancements in personalized medicine, identifying genetic variants associated with diseases and predicting patient responses to treatments.

Real World Application

- Genomic surveillance: Tracking the spread of pathogens in terms of genomic content
- Real time identification of new and rapidly emerging coronavirus variants
- Track the spread of known coronavirus variants in new municipalities, regions, countries and continents

We compute Information Gain (IG) between each attribute (amino acid position) and the class (variant). The IG is defined as

$$IG(Class, position) = H(Class) - H(Class|position)$$

where $H = \sum_{i \in Class} -p_i \log p_i$ is the entropy, and p_i is the probability of the class *i*.

Figure: IG for AA with respect to variants. The x-axis corresponds to AA positions in a spike sequence.

(1)

- Kernel-based Methods
- Embedding-based methods 2
- Sequence-to-Image transformation

▶ < ⊒ ▶

- For enabling ML/DL-based analysis, biological sequences need to be transformed into numerical representations.
- But usually the numerical feature embedding generation methods undergo sparsity and curse of dimensionality challenges.
- State-of-the-Art DL classifiers perform suboptimal on tabular data compared to tree-based methods due to their interpretability, robustness, efficiency, and feature handling capabilities..

- Variable lengths of sequences
- Capturing both local and global structures
- Traditional methods (e.g. Phylogenetic Trees) are computationally expensive
- Mutations happen disproportionally

k-spectrum and *k*, *m*-mismatch kernel: Given a sequence X over alphabet Σ , the *k*, *m*-mismatch spectrum of X is a $|\Sigma|^k$ -dimensional vector, $\Phi_{k,m}(X)$ of number of times each possible *k*-mer occurs in X with at most *m* mismatches. Formally,

$$\Phi_{k,m}(X) = \left(\Phi_{k,m}(X)[\gamma]\right)_{\gamma \in \Sigma^k} = \left(\sum_{\alpha \in X} I_m(\alpha, \gamma)\right)_{\gamma \in \Sigma^k},$$
(2)

where $I_m(\alpha, \gamma) = 1$, if α belongs to the set of k-mers that differ from γ by at most m mismatches, i.e. the Hamming distance between α and γ , $d(\alpha, \gamma) \leq m$. Note that for m = 0, it is known as k-spectrum of X.

Kernel-based Solution

Figure: The (k)-spectrum (top) and (k, m)-mismatch spectrum (bottom) for a DNA sequence X with |X| = 20, $\Sigma = \{A, C, G, T\}$, k = 3 and m = 1 are shown. For a selected k-mer = CGT, the (k)-spectrum computes the exact occurrences of the k-mer in X. The (k, m)-mismatch spectrum counts the occurrences of the k-mer in X up to Hamming distance of m = 1. We show a particular scenario of CG*, where $* \in \Sigma$ in this case.

Dataset

			No.	No. of se	equences
Lineages	Region	Labels	Mut. S/Gen.	GISAID- 1	GISAID- 2
B.1.1.7	UK [1]	Alpha	8/17	3369	3397
B.1.617.2	India [2]	Delta	8/17	875	878
AY.4	India [3]	Delta	-	593	516
B.1.2		-	-	333	350
B.1				292	276
B.1.177	Spain [4]	-	-	243	281
P.1	Brazil [5]	Gamma	10/21	194	201
B.1.1			-	163	166
B.1.429	California	Epsilon	3/5	107	142
B.1.526	New York [6]	lota	6/16	104	82
AY.12	India [3]	Delta	-	101	82
B.1.160		-	-	92	88
B.1.351	South Africa [1]	Beta	9/21	81	62
B.1.427	California [7]	Epsilon	3/5	65	62
B.1.1.214	-	-	-	64	64
B.1.1.519	-	-	-	56	88
D.2	-	-	-	55	45
B.1.221	-	-	-	52	41
B.1.177.2	L-	-	-	47	56
B.1.258	-	-	-	46	42
B.1.243	-	-	-	36	40
R.1	-	-	-	32	41
Total	-	-	-	7000	7000

Sarwan Ali (Georgia State University)

12 / 56

		Acc.		Prec.		Recall		F1 (Weig.)		F1 (Macro)		ROC A	UC	Train (Sec.)	Time
	SVM	0.84 0.0016	±	0.83 0.0045	±	0.84 0.0016	±	0.82 0.0026	±	0.63 0.0120	±	0.81 0.0040	±	7.35 0.2239	±
Kernel	NB	0.75 0.0073	±	0.82 0.0072	±	0.75 0.0082	±	0.77 0.0076	±	0.6 0.0133	±	0.82 0.0088	±	0.17 0.2408	±
iviethod	MLP	0.83 0.0038	±	0.82 0.0517	±	0.83 0.0038	±	0.82 0.0052	±	0.62 0.0173	±	0.81 0.0068	±	12.65 0.0140	±
	KNN	0.82 0.0099	±	0.82 0.0063	±	0.82 0.0099	±	0.82 0.0084	±	0.62 0.0245	±	0.79 0.0135	±	0.32 1.2661	±
	RF	0.84 0.0056	±	0.84 0.0082	±	0.84 0.0056	±	0.83 0.0066	±	0.66 0.0121	±	0.82 0.0045	±	1.46 0.0126	±
	LR	0.84 0.0041	±	0.84 0.0042	±	0.84 0.0041	±	0.82 0.0055	±	0.62 0.0294	±	0.81 0.0148	±	1.86 0.0378	±
	DT	0.82 0.0086	±	0.82 0.0096	±	0.82 0.0086	±	0.82 0.0088	±	0.63 0.0207	±	0.82 0.0124	±	0.24 0.0102	±

		Acc.		Prec.		Recall		F1 (Weig.)		F1 (Macro))	ROC A	UC	Train (Sec.)	Time
	SVM	0.85 0.0023	±	0.85 0.0043	±	0.85 0.0021	±	0.84 0.0030	±	0.63 0.0132	±	0.81 0.0040	±	5.06 0.2591	±
Kernel	NB	0.75 0.0101	±	0.81 0.0069	±	0.75 0.0106	±	0.76 0.0091	±	0.58 0.0147	±	0.8 0.0086	±	0.11 0.2787	±
iviethod	MLP	0.85 0.0053	±	0.84 0.0491	\pm	0.85 0.0049	±	0.83 0.0061	±	0.66 0.0191	±	0.83 0.0067	±	15.92 0.1644	±
	KNN	0.82 0.0137	±	0.82 0.0060	±	0.82 0.0128	±	0.82 0.0100	±	0.62 0.0271	±	0.79 0.0133	±	0.29 2.4294	±
	RF	0.85 0.0078	±	0.85 0.0078	±	0.85 0.0073	±	0.84 0.0078	±	0.66 0.0134	±	0.82 0.0044	±	1.49 0.1017	±
	LR	0.85 0.0057	±	0.84 0.0040	±	0.85 0.0053	±	0.83 0.0066	±	0.6 0.0325	±	0.81 0.0146	±	1.76 0.1108	±
	DT	0.83 0.0119	±	0.83 0.0091	±	0.83 0.0111	±	0.82 0.0104	±	0.63 0.0228	±	0.81 0.0122	±	0.25 0.0850	±

June 24, 2024

15 / 56

		Acc.		Prec.		Recall		F1 (Weig.)		F1 (Macro)		ROC A	UC	Train (Sec.)	Time
	SVM	0.85 0.0015	±	0.83 0.0041	±	0.85 0.0015	±	0.83 0.0023	±	0.62 0.0110	±	0.81 0.0037	±	33.9 0.2053	±
Kernel Math a d	NB	0.74 0.0067	±	0.8 0.0066	±	0.74 0.0075	±	0.76 0.0070	±	0.59 0.0122	±	0.8 0.0080	±	0.13 0.2208	±
wiethod	MLP	0.83 0.0035	±	0.82 0.0474	±	0.83 0.0035	±	0.82 0.0047	±	0.61 0.0158	±	0.8 0.0062	±	21.77 0.0128	±
	KNN	0.81 0.0091	±	0.81 0.0058	±	0.81 0.0091	±	0.8 0.0077	±	0.63 0.0225	±	0.8 0.0124	±	0.31 1.1609	±
	RF	0.862 0.0052	±	0.85 0.0075	±	0.862 0.0052	±	0.84 0.0060	±	0.67 0.0111	±	0.83 0.0041	±	1.54 0.0116	±
	LR	0.85 0.0038	±	0.84 0.0039	±	0.85 0.0038	±	0.83 0.0051	±	0.63 0.0270	±	0.81 0.0136	±	2.99 0.0346	±
	DT	0.83 0.0078	±	0.83 0.0088	±	0.83 0.0078	±	0.82 0.0080	±	0.63 0.0190	±	0.81 0.0113	±	0.23 0.0094	±

		Acc.		Prec.		Recall		F1 (Weig.)		F1 (Macro)	ROC A	UC	Train (Sec.)	Time
	SVM	0.86 0.0018	±	0.86 0.0052	±	0.86 0.0026	±	0.85 0.0034	±	0.67 0.0156	±	0.83 0.0060	±	46.7 0.4012	±
Kernel Mathad	NB	0.71 0.0079	±	0.79 0.0083	\pm	0.71 0.0132	±	0.73 0.0102	±	0.49 0.0173	±	0.75 0.0129	±	0.12 0.4315	±
Iviethod	MLP	0.85 0.0042	±	0.85 0.0593	\pm	0.85 0.0061	±	0.83 0.0069	±	0.64 0.0225	±	0.82 0.0100	±	30.54 0.1191	±
	KNN	0.83 0.0108	±	0.85 0.0073	±	0.83 0.0159	±	0.83 0.0112	±	0.64 0.0319	±	0.82 0.0199	±	0.27 3.7619	±
	RF	0.86 0.0061	±	0.86 0.0094	±	0.86 0.0090	±	0.84 0.0087	±	0.65 0.0158	±	0.82 0.0066	±	1.43 0.1574	±
	LR	0.87 0.0045	±	0.87 0.0049	±	0.87 0.0066	±	0.86 0.0073	±	0.69 0.0383	±	0.84 0.0218	±	3.1 ± 0	0.1716
	DT	0.86 0.0093	±	0.86 0.0110	±	0.86 0.0137	±	0.85 0.0117	±	0.68 0.0269	±	0.83 0.0182	±	0.19 0.1317	±

Embedding-based Solution (Position Weight Matrix)

Sarwan Ali (Georgia State University)

Molecular Sequence Analysis

June 24, 2024

18 / 56

Embedding-based Solution (Position Weight Matrix)

Dataset

Host Name	# of Sequences	Host Name	# of Sequences
Humans	1813	Rats	26
Environment	1034	Pangolins	21
Weasel	994	Hedgehog	15
Swine	558	Dolphin	7
Birds	374	Equine	5
Camels	297	Fish	2
Bats	153	Unknown	2
Cats	123	Python	2
Bovines	88	Monkey	2
Dogs	40	Cattle	1
Turtle	1		

Table: Dataset Statistics for 5558 coronavirus hosts.

Method	ML. Algo.	Acc.	Prec.	Recall	F1 (Weig.)	ROC AUC	Train Time (Sec.)
PSSMFreq2Vec	SVM	0.83	0.83	0.83	0.82	0.81	50.72
	NB	0.64	0.74	0.64	0.61	0.75	5.90
	MLP	0.83	0.82	0.83	0.83	0.77	33.44
	KNN	0.80	0.80	0.80	0.80	0.75	65.20
	RF	0.84	0.85	0.84	0.83	0.81	11.42
	LR	0.84	0.85	0.84	0.84	0.81	57.55
	DT	0.84	0.85	0.84	0.80	0.79	7.50
PSSM2Vec	SVM	0.78	0.79	0.78	0.76	0.85	1.81
	NB	0.60	0.62	0.60	0.57	0.77	0.15
	MLP	0.81	0.81	0.81	0.80	0.89	13.70
	KNN	0.82	0.82	0.82	0.81	0.87	0.66
	RF	0.86	0.86	0.86	0.85	0.91	1.43
	LR	0.73	0.75	0.73	0.70	0.78	1.91
	DT	0.82	0.82	0.82	0.82	0.89	0.20

Figure: Correlation values for Coronavirus Host data. (a) and (b) show the fraction of features having correlation values greater than or less than the thresholds (on x-axis). The fractions are computed by taking denominator as the size of embeddings (69960 for OHE, 8000 for Spike2Vec, 3490 for PWM2Vec, 8000 for PSSMFreq2Vec, and 60 for PSSM2Vec).

э

Figure: Runtime comparison for different embedding methods with increasing number of sequences using Random Forest classifier (best performing classifier). The figure is best seen in color.

Sarwan Ali (Georgia State University)

Molecular Sequence Analysis

- We propose Chaos Game Representation-based method, which is an efficient way to convert sequences into images.
- Our proposed embedding method is alignment-free and could improve the "area of interest" within the image by performing biologically meaningful manipulation of a sequence first and then mapping the manipulated sequence into an image

Chaos Game Representation (CGR)

(a) illustrates the CGR-based space allocation for a given k-mer in the respective image.(b) shows an example of 3-mers from a given sequence. (c) shows an example of 20-flakes for protein sequences.

Chaos Game Representation (CGR)

- CGR is used to convert sequences into images. Works well for nucleotide sequences.
- FCGR follows CGR to get images of protein sequences.
 - Get the x and y axis for an amino acid i using the given equations:

$$x[i] = r \cdot \sin(\frac{2\pi i}{n} + \theta) \tag{3}$$

Here, r is a scaling factor that determines the size of the image, i is the position of the amino acid in the sequence, n is the total number of amino acids in the sequence, and θ is an angle parameter that affects the orientation of the image.

$$y[i] = r \cdot \cos(\frac{2\pi i}{n} + \theta) \tag{4}$$

• These equations create a positional mapping of amino acids in a protein sequence onto a 2D plane, allowing the visualization of protein sequences as images. The values of r and θ can be adjusted to modify the appearance and characteristics of the resulting images.

Sarwan Ali (Georgia State University)

Molecular Sequence Analysis

- Sine and cosine are periodic functions with a period of 2π . This means they repeat their values in a regular interval, which is useful for creating repeating patterns in fractals.
- The periodic nature ensures that as i (the index of the current amino acid) changes, the points cycle through positions around the circle, leading to a coherent and continuous pattern.
- Angle Variation: The angle inside the sin and cos functions $\left(\frac{2\pi i}{n} + \theta\right)$ controls the variation of positions along the circular pattern. Here: $\frac{2\pi i}{n}$ divides the circle into *n* equal parts based on the position of the amino acid *i* in the sequence. θ introduces an additional angle parameter that can rotate or shift the circular pattern, allowing for variations in the resulting image orientation.

- Spatial Distribution: By combining sin and cos with the angle parameters, the equations generate a spatial distribution of points that covers the 2D space effectively. The use of trigonometric functions helps distribute the points evenly along the circular or spiral path, ensuring a balanced representation of the sequence.
- Scaling and Orientation: The scaling factor r in front of sin and cos determines the size of the circular pattern or spiral. A larger r value results in a larger pattern, while a smaller r value creates a tighter and more condensed pattern. The angle parameter θ allows for the adjustment of the image's orientation. By changing θ, we can rotate or shift the circular/spiral pattern, providing flexibility in the visual representation of the sequence.

Figure: Workflow of Spike2CGR for a given sequence. For a given spike sequence, steps from (a) to (d) are followed to generate the corresponding Spike2CGR sequence.

э

Spike2CGR (Image Transformation)

Figure: Graphical representation of a spike sequence of B.1.351 variant (from SARS-CoV-2 dataset) using different methods. Some of the major changes in the images (area of interest) are highlighted using the red boxes.

Classification Models

- Two types of classification models are used:
 - Tabular Models: 3-layer Tab CNN & 4-layer Tab CNN
 - Vision Models: CNN, RESNET (pre-trained), VGG-19 (pre-trained).

Figure: The architectures of the 4-layer CNN model. Here ker represents kernel and str represents stride filter size.

Dataset

				No.	of sequence	es
Lineage	Region	Labels	No. Mut. S/Gen.	Training	Validation	Testing
B.1.1.7	UK [1]	Alpha	8/17	9930	2527	3146
B.1.617.2	India [2]	Delta	8/17	1877	450	456
P.2	Brazil [8]	Zeta	3/7	1780	432	533
B.1.429	California	Epsilon	3/5	1079	256	326
P.1	Brazil [5]	Gamma	10/21	994	245	306
B.1.526	New York [6]	lota	6/16	847	219	255
B.1.351	South Africa [1]	Beta	9/21	837	221	258
B.1.427	California [7]	Epsilon	3/5	835	218	268
B.1.1.529	South Africa	Omicron	34/53	747	178	253
C.37	Peru [8]	Lambda	8/21	732	169	228
B.1.621	Colombia [8]	Mu	9/21	717	168	219
B.1.525	UK and Nigeria	Eta	8/16	714	187	224
P.3	Philippines [8]	Theta	8/17	111	30	34
Total	-	-	-	21200	5300	6238

DL Model	Method	Acc. ↑	Prec. 1	` Recall ↑	F1 (Weig.) ↑	F1 (Macro) ↑	ROC AUC ↑	Train Time (hrs.) ↓
3-Layer Tab CNN	OHE [9] WDGRL [10]	0.472 0.636	0.301 0.457	0.472 0.636	0.368 0.523	0.060 0.263	0.552 0.594	0.594 0.380
4-Layer Tab CNN	OHE [9] WDGRL [10]	0.637 0.688	0.469 0.517	0.637 0.688	0.528 0.582	0.157 0.227	0.511 0.637	0.977 0.866
1-Layer CNN	Chaos [11] Spike2Vec [12] PWM2Vec [13] Minimizer Spike2CGR	0.700 0.733 0.734 0.743 0.719	0.680 0.690 0.676 0.707 0.730	0.696 0.733 0.734 0.743 0.766	0.651 0.679 0.691 0.709 0.739	0.563 0.679 0.697 0.709 0.717	0.673 0.850 0.844 0.832 0.840	8.195 7.779 5.744 6.171 4.992
% improv Spike2CGR SOTA Chao	r. of from s [11]	1.9	5	7	8.8	15.8	16.7	39.08

DL Model	Method	Acc. ↑	Prec. ↑	⁻ Recall ↑	F1 (Weig.) ↑	F1 (Macro) ↑	ROC AUC ↑	Train Time (hrs.) ↓
2-Layer CNN	Chaos [11] Spike2Vec [12] PWM2Vec [13] Minimizer Spike2CGR	0.700 0.740 0.740 0.710 0.633	0.669 0.730 0.700 0.710 0.577	0.697 0.744 0.739 0.710 0.633	0.652 0.729 0.688 0.681 0.559	0.564 0.736 0.694 0.581 0.376	0.645 0.725 0.676 0.771 0.663	6.394 7.329 6.615 6.426 6.193
% improv Spike2CGR SOTA Chao	v. of from os [11]	-6.7	-9.2	-6.4	-9.3	-18 .8	1.8	3.14

DL Model	Method	Acc. ↑	Prec. ↑	[•] Recall ↑	F1 (Weig.) ↑	F1 (Macro) ↑	ROC AUC ↑	Train Time (hrs.) ↓
3-Layer CNN	Chaos [11] Spike2Vec [12] PWM2Vec [13] Minimizer Spike2CGR	0.740 0.750 0.751 0.750 0.770	0.722 0.723 0.715 0.729 0.724	0.739 0.750 0.751 0.750 0.767	0.717 0.715 0.716 0.721 0.734	0.696 0.725 0.732 0.719 0.712	0.809 0.838 0.846 0.851 0.845	5.658 6.919 7.458 6.332 4.758
% improv Spike2CGR SOTA Chao	v. of from os [11]	3	0.2	2.8	1.7	1.6	3.6	31.23

DL Model	Method	Acc. ↑	Prec. ↑	Recall ↑	F1 (Weig.) ↑	F1 (Macro) ↑	ROC AUC ↑	Train Time (hrs.) ↓
	Chaos [11]	0.740	0.686	0.737	0.706	0.678	0.728	7.986
1 Javor	Spike2Vec [12]	0.750	0.686	0.749	0.712	0.720	0.842	7.447
	PWM2Vec [13]	0.750	0.733	0.745	0.736	0.747	0.847	7.720
CININ	Minimizer	0.750	0.726	0.750	0.706	0.709	0.846	7.068
	Spike2CGR	0.7708	0.731	0.768	0.738	0.714	0.843	10.658
% improv	. of	3	4.5	3.1	3.2	3.6	11.5	-33.45
Spike2CGR	from							
SOTA Chao	s [11]							

DL Model	Method	Acc. ↑	Prec. ↑	Recall ↑	F1 (Weig.) ↑	F1 (Macro) ↑	ROC AUC ↑	Train Time (hrs.) ↓
RESNET50 Pre- Trained Model	Chaos [11] Spike2Vec [12] PWM2Vec [13] Minimizer Spike2CGR	0.680 0.711 0.680 0.723 0.740	0.644 0.657 0.589 0.665 0.661	0.676 0.710 0.675 0.723 0.736	0.641 0.666 0.606 0.673 0.683	0.547 0.644 0.507 0.647 0.626	0.743 0.759 0.757 0.802 0.780	10.654 10.746 10.264 11.732 14.299
% improv Spike2CGR SOTA Chao	v. of from os [11]	6	-1.7	6	4.2	7.9	3.7	-34.21

DL Model	Method	Acc. ↑	Prec. ↑	Recall ↑	F1 (Weig.) ↑	F1 (Macro) ↑	ROC AUC ↑	Train Time (hrs.) ↓
VGG-19 Pre- Trained Model	Chaos [11] Spike2Vec [12] PWM2Vec [13] Minimizer Spike2CGR	0.480 0.470 0.464 0.480 0.495	0.233 0.221 0.215 0.227 0.245	0.483 0.470 0.464 0.477 0.495	0.315 0.301 0.294 0.308 0.327	0.050 0.049 0.048 0.496 0.050	0.500 0.500 0.500 0.500 0.500	27.398 26.599 23.781 24.459 24.355
% improv Spike2CGR SOTA Chao	v. of from os [11]	1.5	1.2	1.2	1.2	0	0	8.4

	D 1 407	67	0	0	1	2	1	104	0	0	1	1	0	0	114	0	0	0	0	0	150	1	0	0	0	0	1		
	B.1.427	67	0	0	T	3	T	194	0	0	T	T	0	0	114	0	0	0	0	0	122	T	0	0	0	0	T		
	B.1.621	3	141	1	2	0	0	67	0	0	5	0	0	0	1	199	0	1	0	0	19	0	0	0	0	0	0		- 2500
	B.1.526	1	1	158	1	0	0	92	0	0	1	0	1	0	1	0	194	1	0	0	54	0	0	3	0	2	0		
	P.1	1	2	1	156	0	1	143	0	0	1	0	1	0	1	0	0	199	0	0	98	0	0	1	0	0	0		- 2000
SS	B.1.429	84	0	4	2	15	0	217	0	0	2	1	1	0	2	0	3	1	0	0	300	0	0	3	1	0	16		- 2000
la	P.2	0	0	5	0	0	446	82	0	0	0	0	0	0	0	0	0	0	0	520	4	0	0	0	0	0	1		
C	B.1.1.7	67	6	36	63	8	0	2907	1	0	21	24	12	1	63	16	40	89	0	0	2849	0	0	51	24	17	1		- 1500
ue	B.1.617.2	4	2	4	9	3	0	429	0	0	1	2	1	1	6	1	5	17	0	0	415	1	0	7	1	2	1		
Ē	P.3 -	0	0	0	0	0	0	29	0	5	0	0	0	0	0	0	0	0	0	0	0	0	36	0	0	0	0		- 1000
	B.1.351	3	0	0	1	0	0	178	0	0	76	0	0	0	2	0	2	1	0	0	64	0	0	189	0	0	0		
	C.37	0	0	0	0	1	0	50	0	0	0	176	1	0	0	0	0	2	0	0	35	0	0	1	194	1	0		- 500
	B.1.525	0	0	4	0	0	0	62	0	0	0	0	158	0	3	0	0	1	0	0	20	0	0	2	1	197	1		
	B.1.1.529	0	1	0	0	0	0	67	0	0	0	0	0	185	0	0	0	0	0	1	2	0	0	0	0	0	226		0
		6.1.45 · 1.45 ·	8.1.627	8.1.526	(a	Pre	dic Cha	ted	CI	ass	B.1.357	- < _E	B.1.525	0.5'.7.550	(5° 1.92)	- 129-12	8.1.526		Pre	edic (b	ted	Cl	ass ass 2C	ر _{يد} ج	- < _E .	8.1.525	0,1,520)	-0

Molecular Properties (Weights)

- Kyte and Doolittle (KD) Hydropathy Scale
 - Assigns numerical values to amino acids based on their hydrophobicity/hydrophilicity, used in predicting protein structure and function.
- Eisenberg Hydrophobicity Scale
 - Quantifies the hydrophobicity of amino acids, aiding in protein structure prediction and understanding protein interactions with hydrophobic environments.
- Hydrophilicity Scale
 - Measures the propensity of amino acids to interact with water, crucial for understanding protein solubility, folding, and function in aqueous environments.
- Flexibility Of The Characters
 - Evaluates the flexibility or rigidity of amino acids, important for predicting protein dynamics, conformational changes, and flexibility in molecular interactions.
- Hydropathy Scale
 - Ranks amino acids based on their hydrophobic or hydrophilic nature, assisting in studying protein folding, membrane protein structure, and transmembrane domains.

Workflow

Sarwan Ali (Georgia State University)

Molecular Sequence Analysis

June 24, 2024

41 / 56

		Rabie	s Sequenc	e Length	Number of Sequences					
Host Name	Count	Min.	Max.	Average	Training	Validation	Testing			
Canis Familiaris	9065	90	11928	1600.50	5802	1450	1813			
Bos Taurus	2497	117	11928	995.29	1599	399	499			
Vulpes Vulpes	2221	133	11930	2923.77	1422	355	444			
Felis Catus	1125	90	11928	1634.43	720	180	225			
Procyon Lotor	884	291	11926	6763.80	567	141	176			
Desmodus Rotundus	875	164	11923	1051.50	560	140	175			
Mephitis Mephitis	864	220	11929	1266.59	554	138	172			
Homo Sapiens	838	101	11928	1537.85	537	134	167			
Eptesicus Fuscus	718	264	11924	1144.35	460	115	143			
Skunk	492	211	11928	6183.26	316	78	98			
Tadarida Brasiliensis	270	264	11923	1175.67	173	43	54			
Equus Caballus	202	163	11924	1376.74	130	32	40			
Total	20051	-	-	-	-	-	-			

Table: Dataset Statistics for Rabies data.

Sarwan Ali (Georgia State University)

Molecular Sequence Analysis

- Feature-engineering-based methods
 - One Hot Encoding (OHE): created embeddings are sparse and face curse of dimensionality challenge.
 - Wasserstein Distance Guided Representation Learning (WDGRL): require large training data for optimal performance.
 - Position Specific Scoring Matrix (PSSM)
- Image-based method
 - Frequency Matrix-based Chaos Game Representation (FCGR): 1-to-1 mapping between the amino acids and pixels.

	Method	Acc. ↑	Prec. ↑	Recall ↑	F1 (Weig.) ↑	F1 (Macro) ↑	ROC AUC ↑	Train Time (Sec.)↓
NB	OHE	0.124	0.447	0.124	0.134	0.195	0.585	979.44
	WDGRL	0.514	0.441	0.514	0.410	0.184	0.575	0.01
	PSSM2Vec	0.125	0.296	0.125	0.072	0.105	0.58	0.04
3 Layer	OHE	0.451	0.203	0.451	0.280	0.050	0.500	4191.34
Tab	WDGRL	0.450	0.202	0.450	0.279	0.049	0.500	1737.65
CNN	PSSM2Vec	0.452	0.204	0.452	0.281	0.051	0.500	2040.81
4 Layer	OHE	0.452	0.204	0.452	0.281	0.051	0.500	5974.26
Tab	WDGRL	0.535	0.318	0.535	0.395	0.103	0.500	964.97
CNN	PSSM2Vec	0.450	0.204	0.450	0.282	0.052	0.500	3790.09
ViT	Chaos	0.448	0.201	0.448	0.277	0.051	0.500	2943.45
	KD	0.440	0.194	0.440	0.269	0.050	0.500	3593.00
	Eisen.	0.465	0.216	0.465	0.295	0.052	0.500	3474.12
	Flex.	0.441	0.194	0.441	0.270	0.051	0.500	3035.72
	Hydrophil.	0.455	0.207	0.455	0.285	0.052	0.500	2829.95
	Hydropathy	0.449	0.201	0.449	0.278	0.051	0.500	3029.90
CNN	Chaos KD Eisen. Flex. Hydrophil. Hydropathy	0.780 0.771 0.787 0.775 0.785 0.773	0.763 0.757 0.779 0.763 0.770 0.766	0.780 0.771 0.787 0.775 0.785 0.773	0.767 0.756 0.773 0.758 0.774 0.765	0.662 0.647 0.668 0.647 0.659 0.653	0.813 0.807 0.810 0.807 0.807 0.817 0.809	12505.91 13331.11 14127.47 13068.88 14286.38 13115.00
Pretrain	Chaos	0.202	0.365	0.202	0.230	0.081	0.500	146831.05
	KD	0.210	0.370	0.210	0.229	0.079	0.510	147221.45
	Eisen.	0.284	0.451	0.284	0.364	0.095	0.530	161828.01
	Flex.	0.274	0.441	0.274	0.387	0.087	0.500	144477.50
	Hydrophil.	0.283	0.431	0.283	0.363	0.093	0.521	150921.41
	Hydropathy	0.252	0.331	0.252	0.323	0.073	0.500	142441.85

Table: The top 2 best values for each evaluation metric are shown in bold.

Figure: Images generated using Chaos and Eisenberg encoding techniques for a sequence against Cytoplasm location from protein subcellular dataset along with their respective Saliency Maps (S.M.). Some of the major differences between the original images are indicated using the red boxes. The blue color in the saliency maps indicates the most importance. This figure is best seen in colors.

The general formula [14] of the Bézier curve is

$$BZ(t) = \sum_{i=0}^{n} {n \choose i} t^{i} (1-t)^{n-i} P_{i}$$
(5)

where $0 \le t \le 1$, P_i are known as control points and are elements of \mathbb{R}^k , and $k \le n$. To construct the protein images, we employ a Bézier curve with n = 3 and k = 2. As images consist of x and y coordinates, therefore k = 2 is used. The formulas to determine the coordinates for representing an amino acid in the respective generated image are,

$$x = (1-t)^3 \cdot P_{0_x} + 3 \cdot (1-t)^2 \cdot t \cdot P_{1_x} + 3 \cdot (1-t) \cdot t^2 \cdot P_{2_x} + t^3 \cdot P_{3_x}$$
(6)

$$y = (1-t)^3 \cdot P_{0_y} + 3 \cdot (1-t)^2 \cdot t \cdot P_{1_y} + 3 \cdot (1-t) \cdot t^2 \cdot P_{2_y} + t^3 \cdot P_{3_y}$$
(7)

Bézier curves

```
Input: Sequence seq, No.
                                of Parameters m
   Output: Image img
1: conPoint = \{\}
2: for i, aa \in seq do:
3:
       conPoint[aa] = [i, ASCII(aa)]
4: xCord = []
5: yCord = []
6: t_Val = \text{Get } m \text{ pairs} \in [0, 1]
7: ite = 3
8: for a \in seq : do
9:
       org_point = conPoint[a]
10:
        points = [org_point]
11:
        for i \in (ite) : do
12:
            dev = Get Random Pair
13:
            mod_point = org_point + dev
14:
            points.append(mod_point)
15:
        curve_point = Get_Bezier_Point(points, t_Val)
16:
        xCord = curve_point[:0]
17:
        vCord = curve_point[:1]
18: img = plot(xCord, yCord)
19: return(img)
```

▷ dictionary for control points
 ▷ every unique amino acid aa in seq
 ▷ assign control point the index i and ASCII of aa
 ▷ list for x coordinates
 ▷ list for y coordinates
 ▷ list of m pairs of parameters
 ▷ no. of deviations pair points. It can have any value.
 ▷ every amino acid a in seq
 ▷ control point of a

▷ get a modified control point
 ▷ get bezier curve points from bezier func
 ▷ get x coords of curve

▷ get y coords of curve

 \triangleright get image by plotting x & y coords

Figure: The workflow of our system to create an image from a given sequence and a number of parameters m. We have used "MAVM" as an input sequence here. Note that the cur_Pts consists of a set of values for x coordinates and y coordinates.

Sarwan Ali (Georgia State University)

Molecular Sequence Analysis

Bézier curves

Figure: The Bézier curve method-based images created for two sequences from the ACP dataset. One sequence belongs to the active class of the dataset, while the other is from the inactive class.

Sarwan Ali (Georgia State University)

Molecular Sequence Analysis

Dataset

		Protein Subcellular Sequence Length							
Subcellular Locations	Count	Min.	Max.	Average					
Cytoplasm	1411	9	3227	337.32					
Plasma Membrane	1238	47	3678	462.21					
Extracellular Space	843	22	2820	194.01					
Nucleus	837	16	1975	341.35					
Mitochondrion	510	21	991	255.78					
Chloroplast	449	71	1265	242.03					
Endoplasmic Reticulum	198	79	988	314.64					
Peroxisome	157	21	906	310.75					
Golgi Apparatus	150	116	1060	300.70					
Lysosomal	103	101	1744	317.81					
Vacuole	63	60	607	297.95					
Total	5959	-	-	-					

Category	DL Model	Method	Acc. ↑	Prec. ↑	Recall ↑	F1 (Weig.) ↑	F1 (Macro) ↑	ROC AUC ↑	Train Time (hrs.) ↓
Vision Transformer	ViT	FCGR RandmCGR Spike2CGR Bézier	0.226 0.222 0.222 0.462	0.051 0.049 0.051 0.254	0.226 0.222 0.222 0.462	0.083 0.080 0.083 0.327	0.033 0.033 0.147 0.147	0.500 0.500 0.500 0.572	0.180 0.154 0.176 0.160
	% improv. from FCGR % impro. of Spike2CGR	of Bézier FBézier from	23.6 24	20.3 20.3	23.6 24	24.4 24.4	11.4 0	7.2	-9.09
Pretrained Vision Models	ResNet-	FCGR RandmCGR Spike2CGR Bézier	0.368 0.293 0.368 <u>0.964</u>	0.268 0.174 0.175 <u>0.967</u>	0.368 0.293 0.368 <u>0.964</u>	0.310 0.211 0.214 <u>0.961</u>	0.155 0.102 0.105 <u>0.907</u>	0.556 0.527 0.565 <u>0.948</u>	3.831 13.620 10.992 11.415
	% improv. from FCGR	of Bézier	59.6	69.9	59.6	65.1	75.2	39.2	-197.96

Category	DL Model	Method	Acc. ↑	Prec. ↑	` Recall ↑	F1 (Weig.) ↑	F1 (Macro) ↑	ROC AUC ↑	│ Train │ Time │ (hrs.) ↓
	VGG-19	FCGR RandmCGR Spike2CGR	0.316 0.288 0.351	0.209 0.192 0.352	0.316 0.288 0.351	0.241 0.218 0.333	0.114 0.105 0.211	0.533 0.525 0.550	14.058 26.136 19.980
		Bézier	0.896	0.879	0.896	0.873	0.680	0.840	18.837
Pretrained Vision Models	% improv. from FCGR	of Bézier	58	67	58	63.2	56.6	30.7	-33.99
	% impro. of Spike2CGR	Bézier from	54.5	52.7	54.5	56.3	46.9	29	5.7
		FCGR	0.100	0.088	0.100	0.094	0.035	0.532	31.194
	EfficientNo	RandmCGR	0.284	0.107	0.284	0.152	0.078	0.500	30.223
	Encientive	^L Spike2CGR	0.320	0.230	0.320	0.230	0.200	0.500	25.497
		Bézier	0.834	0.787	0.834	0.797	0.483	0.751	20.312
	% improv. from FCGR	of Bézier	73.4	69.9	73.4	70.3	44.8	21.9	34.88

- We discuss different methods of molecular sequence analysis.
- Using sequence-to-image transformation, we enable the vision models to be used for sequence classification.

Future Work

- Try on larger data to evaluate the scalability.
- Employ other methods like spaced minimizers to get the images.

Thank You

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

- Website: https://sarwanpasha.github.io/
- Google Scholar: https://scholar.google.com/citations?user=9dtXSoAAAAAJ&hl=en

∃ ► < ∃ ►

References

- S. Galloway *et al.*, "Emergence of sars-cov-2 b. 1.1. 7 lineage," *Morbidity and Mortality Weekly Report*, vol. 70, no. 3, p. 95, 2021.
- P. Yadav *et al.*, "Neutralization potential of covishield vaccinated individuals sera against b. 1.617. 1," *bioRxiv*, vol. 1, 2021.
- CDC, "Sars-cov-2 variant classifications and definitions," https://www.cdc.gov/coronavirus/2019-ncov/variants/variant-info.html, 2021, [Online; accessed 29-December-2021].
- E. B. Hodcroft, M. Zuber, S. Nadeau, T. G. Vaughan, K. H. Crawford, C. L. Althaus, M. L. Reichmuth, J. E. Bowen, A. C. Walls, D. Corti *et al.*, "Emergence and spread of a sars-cov-2 variant through europe in the summer of 2020," *MedRxiv*, 2020.
- F. Naveca *et al.*, "Phylogenetic relationship of sars-cov-2 sequences from amazonas with emerging brazilian variants harboring mutations e484k and n501y in the spike protein," *Virological. org*, vol. 1, 2021.

э.

- A. West Jr *et al.*, "Detection and characterization of the sars-cov-2 lineage b. 1.526 in new york," *bioRxiv*, 2021.
- W. Zhang *et al.*, "Emergence of a novel sars-cov-2 variant in southern california," *Jama*, vol. 325, no. 13, pp. 1324–1326, 2021.
- WHO Website, https://www.who.int/en/activities/tracking-SARS-CoV-2-variants/.
- K. Kuzmin *et al.*, "Machine learning methods accurately predict host specificity of coronaviruses based on spike sequences alone," *Biochemical and Biophysical Research Communications*, vol. 533, no. 3, pp. 553–558, 2020.
- J. Shen, Y. Qu, W. Zhang, and Y. Yu, "Wasserstein distance guided representation learning for domain adaptation," in *AAAI conference on artificial intelligence*, 2018.
- H. F. Löchel, D. Eger, T. Sperlea, and D. Heider, "Deep learning on chaos game representation for proteins," *Bioinformatics*, vol. 36, no. 1, pp. 272–279, 2020.

A B M A B M

э.

- S. Ali and M. Patterson, "Spike2vec: An efficient and scalable embedding approach for covid-19 spike sequences," in *IEEE International Conference on Big Data (Big Data)*, 2021, pp. 1533–1540.
- S. Ali, B. Bello, P. Chourasia, R. T. Punathil, Y. Zhou, and M. Patterson, "Pwm2vec: An efficient embedding approach for viral host specification from coronavirus spike sequences," *MDPI Biology*, 2022.
- S. Baydas and B. Karakas, "Defining a curve as a bezier curve," *Journal of Taibah University for Science*, vol. 13, no. 1, pp. 522–528, 2019.

() < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < ()