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Problem Formulation & Motivation



Computational Challenges in Molecular Sequence Analysis

High-Dimensional Data Challenges:
e Curse of Dimensionality: Feature spaces RM with M > N
e Sparsity: Biological sequences create sparse feature
representations Runtime O(N?)

e Computational Complexity: O(N?M) pairwise

computations O(Nlog N)
e Memory Requirements: O(N?) distance matrices /
Existing DR Limitations: N (samples)

Scalability Problem
e Linear methods (PCA, LDA): Assume linear relationships

e Non-linear methods: Computationally prohibitive for large N

e CCP: Promising but O(N?) bottleneck



Correlated Clustering and Projection
(CCP)



CCP Algorithm: Mathematical Foundation

Input: Dataset X € RV*M ‘where N = samples, M = features

Objective: Find low-dimensional embedding ¢ccp : RM — R
CCP Pipeline

1. Variance-based Feature Selection: Select top f features where
f = [numCutoff x |{j : Var(X;) > 0}|]

2. K-means Clustering: Partition features into (n. — 1) clusters
3. Density Map Computation: For cluster C; with features F;:
d(x;,Xk)
A5 = K| =22/ 1
pilx) Z ( scale (1)
Jvkej:i

where K(z) = e=(9)” (Exponential) or K(z) = lep (Lorentz)



CCP Density Computation: Algorithmic Details

Algorithm 1 CCP Correlation Computation

1: function COMPUTECORRELATIONS(idx_comp, idx_Feat, X, transform)
if transform then
3 D < pairwise_distances(X[:, idx_Feat], X, [:, idx_Feat])
4 else
B D < pairwise_distances(Xef[:, idx_Feat])
6: end if
7.
8

if avgmindist[idx_comp] = 0 then
: avgmindist[idx_comp] < % ZIN:I min;; D
9: end if

10: if cutoff[idx_comp] = 0 then

11: up + mean(D), op + std(D)

12: cutoff[idx_comp] < pp + 30p

13: end if

14: scale < user_scale x avgmindist[idx_comp)]

15: p < computeDensity(D, scale, cutoff [idx_comp])
16: return p

17: end function




Proposed CCP-NN Algorithm




CCP-NN: Approximate Nearest Neighbor Enhancement

Key Innovation: Replace exact pairwise distances with
ANN search

AnnoylIndex Properties:
e Data Structure: Forest of random projection trees @

e Build Complexity: O(Nlog N - f) @ @
e Query Complexity: O(log N) per query @ @ @ @

e Space Complexity: O(N - f)

Random Projection Tree
Approximation Quality:
E[||NVk(x) — Ni(xi)ll] < e (2)

Modification: Only Step 5 (density computation) changes; Steps 1-4 and 6-7 remain
identical



CCP-NN Algorithm: Technical Implementation

Algorithm 2 CCP-NN Nearest Neighbor Correlation Computation

1: function NEARESTNEIGHBORCOMPUTECORR(idx_comp, idx_Feat, X, transform)
2: idx <— Annoylndex(len(idx_Feat), metric)

3: for i = 0 to len(X,f[:, idx_Feat]) do
4: idx.add _item(i, Xf[:, idx_Feat][i])
5 end for
6: idx.build(—1) > Build index with all trees
7 if transform then
8: p < [idx.get_nns_by _vector(feat, k) for feat in X[:, idx_Feat]]
9: else
10: p < lidx.get_nns_by_item(i, k) for i in range(N)]
11: end if

12: p < reshape(p, (—1,1))
> Same scaling and cutoff computation as CCP

13: scale +— user_scale x avgmindist[idx_comp]
14: p < computeDensity(p, scale, cutoff[idx_compl])
15: return p

16: end function




Complexity Analysis




Theoretical Complexity Comparison

Algorithm Time Complexity Space Complexity
O(N - f(nc - niter + N))
Dominated by O(N?2 - f)

O(N - f(nc - njter + log N))

Dominated by O(Nlog N - f)

CCP O(N(M + N))

CCP-NN O(N(M + log N - £))

Asymptotic Improvement:
O(N?) N (3)
O(NlogN)  log N

Speedup Factor =

Concrete Example: For N = 10%, f = 100, n. = 10:

e CCP: ~ 10° operations
e CCP-NN: ~ 1.3 x 10° operations
e Theoretical speedup: ~ 770x 3



Convergence Analysis




Theoretical Convergence Guarantees

Setup: Let X ~ P(X) with density p(x)

Approximation Error: Annoylndex provides e-approximate nearest neighbors:

E[||Vk(xi) = M)l < e (4)
Density Estimation: CCP-NN density estimate:
R 1 Xj — X;
px) = X K (5 )
XjENk(X,)

Error Bound: Using triangle inequality:
1B(xi) — p(xi)| < [B(xi) = p(xi, Nic(xi)| + |p(xi Nie(xi)) = p(x;)] (6)

Final Result:

Bo0x) — p(x)] < O (e 4+ ) U



Experimental Validation




Datasets and Experimental Setup

Dataset Samples | Classes Type Avg. Length
Protein Subcellular 5,959 11 Protein 934
Coronavirus Host 5,558 21 Spike Protein 1,273
Human DNA 4,380 7 Nucleotide 4,380

Embedding Methods:

OHE: One-Hot Encoding
Spike2Vec: Word2Vec-based protein embeddings
PWM2Vec: Position Weight Matrix embeddings

Autoencoder: Neural network-based embeddings

Evaluation: 7 classifiers x 5-fold CV x 5 random runs = 175 experiments per method
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Performance Results: Accuracy & Runtime

Method Accuracy A Method Runtime (s) | Speedup
OHE + CCP 0.712 - OHE + CCP 1245 -
OHE - CCP-NN 0.752 +5.6% OHE + CCP-NN 95.5 1.3x
Spike2Vec + CCP 0.784 - Spike2Vec + CCP 87.2 -
Spike2Vec + CCP-NN 0812 | +3.6% Spike2Vec - CCP-NN 041 3.6
PWM2Vec + CCP 0.801 - PWM2Vec + CCP 203.7 =
PWM2Vec + CCP-NN 0834 | +4.1% PWM2Vec + CCP-NN 80.8 2.3x
Autoencoder 4 CCP 0.823 B Autoencoder + CCP 315.4 -
Autoencoder + CCP-NN 0.859 +4.4% Autoencoder + CCP-NN 22,5 14x

Table 1: Protein Subcellular Dataset Vel 25 Rumifine Comperizen

Key Findings:

e Consistent accuracy improvements across all embedding methods
e Significant runtime reductions, especially with dense embeddings

e Better approximation quality leads to improved classification performance
11



Scalability Analysis

Scaling Behavior:

350

300 | & ccp 1 CCP shows quadratic growth pattern, while
m — CCP-NN o . .
T o0 —n—— | CCP-NN exhibits near-linear scaling.
§ 200 3
Z Memory Usage:
g 150 . o s .
£ 100 e CCP: O(N?) distance matrices
c 1 -
& 50 e CCP-NN: O(N log N) index structure

| | | | |
19000 2,000 3,000 4,000 5,000 6,000Practical Impact: For N > 10%, CCP
Dataset Size (N) becomes computationally prohibitive, while

CCP-NN remains tractable.

12



Technical Insights & Future
Directions




Key Technical Contributions

Algorithmic Innovation
e Hybrid: CCP’s correlation-based clustering while leveraging ANN efficiency
e Theoretical Guarantees: Formal converg. analysis with bounded approx. error
e Practical Scalability: Reduces complexity from O(N?) to O(N log N)
Empirical Validation
e Accuracy Improvement: Up to 10.8% better classification performance
e Runtime Efficiency: Up to 14x speedup on real biological datasets

e Robustness: Consistent improvements across multiple embedding methods
Future Research Directions

e Deep Integration: Incorporation with transformer-based protein language models

e Multi-scale Analysis: Extension to hierarchical biological sequence structures

e Distributed Computing: Parallel implementation for genome-scale datasets 13



Conclusion

CCP-NN: Bridging Theory and Practice

Theoretical Contributions:

e Rigorous complexity analysis

e Convergence guarantees Better Accuracy
e Approximation error bounds T
Practical Impact: Scalable «<—  CCP-NN

— Faster Runtime

e Enables large-scale sequence analysis l

e Maintains classification quality

Lower Memory

e Significant computational savings
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Thank You!

Questions & Discussion

sa4559@cumc.columbia.edu
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