Nearest Neighbor CCP-Based Molecular Sequence Analysis

An Efficient Approach for High-Dimensional Biological Data

Sarwan Ali¹, Prakash Chourasia², Bipin Koirala³, Murray Patterson² IEEE Transactions on Computational Biology and Bioinformatics (TCBB) 2025

¹Columbia University ²Georgia State University ³Georgia Institute of Technology

Outline

Problem Formulation & Motivation

Correlated Clustering and Projection (CCP)

Proposed CCP-NN Algorithm

Complexity Analysis

Convergence Analysis

Experimental Validation

Technical Insights & Future Directions

Problem Formulation & Motivation

Computational Challenges in Molecular Sequence Analysis

High-Dimensional Data Challenges:

- Curse of Dimensionality: Feature spaces \mathbb{R}^M with $M \gg N$
- **Sparsity**: Biological sequences create sparse feature representations
- **Computational Complexity**: $O(N^2M)$ pairwise computations
- Memory Requirements: $\mathcal{O}(N^2)$ distance matrices

Existing DR Limitations:

- Linear methods (PCA, LDA): Assume linear relationships
- Non-linear methods: Computationally prohibitive for large N
- CCP: Promising but $\mathcal{O}(N^2)$ bottleneck

Correlated Clustering and Projection (CCP)

Input: Dataset $\mathbf{X} \in \mathbb{R}^{N \times M}$, where N = samples, M = features

Objective: Find low-dimensional embedding $\phi_{CCP} : \mathbb{R}^M \to \mathbb{R}^{n_c}$ **CCP Pipeline**

- 1. Variance-based Feature Selection: Select top f features where $f = \lfloor \text{numCutoff} \times |\{j : \text{Var}(X_j) > 0\}| \rfloor$
- 2. K-means Clustering: Partition features into $(n_c 1)$ clusters
- 3. **Density Map Computation**: For cluster C_i with features \mathcal{F}_i :

$$\rho_{i}(\mathbf{x}) = \sum_{j,k\in\mathcal{F}_{i}} K\left(\frac{d(\mathbf{x}_{j},\mathbf{x}_{k})}{\mathsf{scale}}\right)$$
(1)

where $K(z) = e^{-(z)^{p}}$ (Exponential) or $K(z) = \frac{1}{1+z^{p}}$ (Lorentz)

CCP Density Computation: Algorithmic Details

Algorithm 1 CCP Correlation Computation

- 1: function COMPUTECORRELATIONS(*idx_comp*, *idx_Feat*, X, *transform*)
- 2: if transform then

```
3: D \leftarrow \text{pairwise\_distances}(X[:, idx\_Feat], X_{ref}[:, idx\_Feat])
```

- 4: else
- 5: $D \leftarrow \text{pairwise_distances}(X_{ref}[:, idx_Feat])$

```
6: end if
```

```
7: if avgmindist[idx_comp] = 0 then
```

```
8: avgmindist[idx\_comp] \leftarrow \frac{1}{N} \sum_{i=1}^{N} \min_{j \neq i} \mathbf{D}_{ij}
```

```
9: end if
```

```
10: if cutoff[idx\_comp] = 0 then
```

```
11: \mu_D \leftarrow \text{mean}(\mathbf{D}), \ \sigma_D \leftarrow \text{std}(\mathbf{D})
```

```
12: cutoff[idx\_comp] \leftarrow \mu_D + 3\sigma_D
```

```
13: end if
```

```
14: scale \leftarrow user\_scale \times avgmindist[idx\_comp]
```

```
15: \rho \leftarrow \text{computeDensity}(\mathbf{D}, \textit{scale}, \textit{cutoff}[\textit{idx\_comp}])
```

```
16: return \rho
```

```
17: end function
```

Proposed CCP-NN Algorithm

CCP-NN: Approximate Nearest Neighbor Enhancement

Key Innovation: Replace exact pairwise distances with ANN search

AnnoyIndex Properties:

- Data Structure: Forest of random projection trees
- Build Complexity: $\mathcal{O}(N \log N \cdot f)$
- Query Complexity: $\mathcal{O}(\log N)$ per query
- Space Complexity: $\mathcal{O}(N \cdot f)$

Approximation Quality:

Random Projection Tree

$$\mathbb{E}[||\mathcal{N}_k(x_i) - \tilde{\mathcal{N}}_k(x_i)||] \le \epsilon$$
(2)

Modification: Only Step 5 (density computation) changes; Steps 1-4 and 6-7 remain identical

CCP-NN Algorithm: Technical Implementation

Algorithm 2 CCP-NN Nearest Neighbor Correlation Computation

- 1: function NEARESTNEIGHBORCOMPUTECORR(idx_comp, idx_Feat, X, transform)
- 2: $idx \leftarrow AnnoyIndex(len(idx_Feat), metric)$
- 3: for i = 0 to $len(X_{ref}[:, idx_Feat])$ do
- 4: $idx.add_item(i, \mathbf{X}_{ref}[:, idx_Feat][i])$
- 5: end for
- 6: idx.build(-1)
- 7: if transform then
- 8: $\rho \leftarrow [idx.get_nns_by_vector(feat, k) \text{ for } feat \text{ in } \mathbf{X}[:, idx_Feat]]$
- 9: else

$$10: \qquad \rho \leftarrow [idx.get_nns_by_item(i,k) \text{ for } i \text{ in } range(N)]$$

11: end if

12: $ho \leftarrow \mathsf{reshape}(
ho, (-1, 1))$

 \triangleright Same scaling and cutoff computation as CCP

▷ Build index with all trees

- 13: $scale \leftarrow user_scale \times avgmindist[idx_comp]$
- 14: $\rho \leftarrow \text{computeDensity}(\rho, scale, cutoff[idx_comp])$
- 15: return ρ
- 16: end function

Complexity Analysis

Theoretical Complexity Comparison

Algorithm	Time Complexity	Space Complexity
ССР	$\mathcal{O}(N \cdot f(n_c \cdot n_{iter} + N))$ Dominated by $\mathcal{O}(N^2 \cdot f)$	$\mathcal{O}(N(M+N))$
CCP-NN	$\mathcal{O}(N \cdot f(n_c \cdot n_{iter} + \log N))$ Dominated by $\mathcal{O}(N \log N \cdot f)$	$\mathcal{O}(N(M + \log N \cdot f))$

Asymptotic Improvement:

Speedup Factor =
$$\frac{\mathcal{O}(N^2)}{\mathcal{O}(N \log N)} = \frac{N}{\log N}$$
 (3)

Concrete Example: For $N = 10^4$, f = 100, $n_c = 10$:

- CCP: $\sim 10^9 \text{ operations}$
- CCP-NN: $\sim 1.3 \times 10^6$ operations
- Theoretical speedup: $\sim 770\times$

Convergence Analysis

Theoretical Convergence Guarantees

Setup: Let $X \sim \mathbb{P}(X)$ with density p(x)

Approximation Error: AnnoyIndex provides ϵ -approximate nearest neighbors:

$$\mathbb{E}[||\mathcal{N}_k(\mathbf{x}_i) - \tilde{\mathcal{N}}_k(\mathbf{x}_i)||] \le \epsilon$$
(4)

Density Estimation: CCP-NN density estimate:

$$\hat{\rho}(\mathbf{x}_i) = \frac{1}{hk} \sum_{\mathbf{x}_j \in \tilde{\mathcal{N}}_k(\mathbf{x}_i)} K\left(\frac{\mathbf{x}_i - \mathbf{x}_j}{h}\right)$$
(5)

Error Bound: Using triangle inequality:

$$|\hat{p}(\mathbf{x}_i) - p(\mathbf{x}_i)| \le |\hat{p}(\mathbf{x}_i) - p(\mathbf{x}_i, \tilde{\mathcal{N}}_k(\mathbf{x}_i))| + |p(\mathbf{x}_i, \tilde{\mathcal{N}}_k(\mathbf{x}_i)) - p(\mathbf{x}_i)|$$
(6)

Final Result:

$$\mathbb{E}[|\hat{p}(\mathbf{x}_i) - p(\mathbf{x}_i)|] \le \mathcal{O}\left(\epsilon + h^4 + \frac{1}{kh}\right)$$
(7)

9

Experimental Validation

Datasets and Experimental Setup

Dataset	Samples	Classes	Туре	Avg. Length
Protein Subcellular	5,959	11	Protein	934
Coronavirus Host	5,558	21	Spike Protein	1,273
Human DNA	4,380	7	Nucleotide	4,380

Embedding Methods:

- **OHE**: One-Hot Encoding
- Spike2Vec: Word2Vec-based protein embeddings
- **PWM2Vec**: Position Weight Matrix embeddings
- Autoencoder: Neural network-based embeddings

Evaluation: 7 classifiers \times 5-fold CV \times 5 random runs = 175 experiments per method

Method	Accuracy	Δ
OHE + CCP	0.712	-
OHE + CCP-NN	0.752	+5.6%
Spike2Vec $+$ CCP	0.784	-
${\sf Spike2Vec} + {\sf CCP-NN}$	0.812	+3.6%
PWM2Vec + CCP	0.801	-
PWM2Vec + CCP-NN	0.834	+4.1%
Autoencoder + CCP	0.823	-
Autoencoder + CCP-NN	0.859	+4.4%

Table 1: Protein Subcellular Dataset

Key Findings:

- Consistent accuracy improvements across all embedding methods
- Significant runtime reductions, especially with dense embeddings
- Better approximation quality leads to improved classification performance

Method	Runtime (s)	Speedup
OHE + CCP	124.5	-
OHE + CCP-NN	95.5	1.3 imes
Spike2Vec $+$ CCP	87.2	-
Spike2Vec + CCP-NN	24.1	3.6×
PWM2Vec + CCP	203.7	-
PWM2Vec + CCP-NN	89.8	2.3×
Autoencoder $+$ CCP	315.4	-
Autoencoder + CCP-NN	22.5	14 ×

Table 2: Runtime Comparison

Scalability Analysis

Scaling Behavior:

CCP shows quadratic growth pattern, while CCP-NN exhibits near-linear scaling.

Memory Usage:

- CCP: $\mathcal{O}(N^2)$ distance matrices
- CCP-NN: $\mathcal{O}(N \log N)$ index structure

Dotaset Size (N) Dotaset Size (N) Dataset Size (N) Technical Insights & Future Directions

Key Technical Contributions

Algorithmic Innovation

- Hybrid: CCP's correlation-based clustering while leveraging ANN efficiency
- Theoretical Guarantees: Formal converg. analysis with bounded approx. error
- **Practical Scalability**: Reduces complexity from $\mathcal{O}(N^2)$ to $\mathcal{O}(N \log N)$

Empirical Validation

- Accuracy Improvement: Up to 10.8% better classification performance
- Runtime Efficiency: Up to $14 \times$ speedup on real biological datasets
- Robustness: Consistent improvements across multiple embedding methods

Future Research Directions

- Deep Integration: Incorporation with transformer-based protein language models
- Multi-scale Analysis: Extension to hierarchical biological sequence structures
- Distributed Computing: Parallel implementation for genome-scale datasets

CCP-NN: Bridging Theory and Practice

Theoretical Contributions:

- Rigorous complexity analysis
- Convergence guarantees
- Approximation error bounds

Practical Impact:

- Enables large-scale sequence analysis
- Maintains classification quality
- Significant computational savings

Thank You!

Questions & Discussion

sa4559@cumc.columbia.edu