
Nearest Neighbor CCP-Based Molecular Sequence Analysis

An Efficient Approach for High-Dimensional Biological Data

Sarwan Ali1, Prakash Chourasia2, Bipin Koirala3, Murray Patterson2

IEEE Transactions on Computational Biology and Bioinformatics (TCBB) 2025

1Columbia University 2Georgia State University 3Georgia Institute of Technology

1



Outline

Problem Formulation & Motivation

Correlated Clustering and Projection (CCP)

Proposed CCP-NN Algorithm

Complexity Analysis

Convergence Analysis

Experimental Validation

Technical Insights & Future Directions

2



Problem Formulation & Motivation



Computational Challenges in Molecular Sequence Analysis

High-Dimensional Data Challenges:

• Curse of Dimensionality: Feature spaces RM with M ≫ N

• Sparsity: Biological sequences create sparse feature

representations

• Computational Complexity: O(N2M) pairwise

computations

• Memory Requirements: O(N2) distance matrices

Existing DR Limitations:

• Linear methods (PCA, LDA): Assume linear relationships

• Non-linear methods: Computationally prohibitive for large N

• CCP: Promising but O(N2) bottleneck

N (samples)

Runtime O(N2)

O(N logN)

Scalability Problem

3



Correlated Clustering and Projection

(CCP)



CCP Algorithm: Mathematical Foundation

Input: Dataset X ∈ RN×M , where N = samples, M = features

Objective: Find low-dimensional embedding ϕCCP : RM → Rnc

CCP Pipeline

1. Variance-based Feature Selection: Select top f features where

f = ⌊numCutoff× |{j : Var(Xj) > 0}|⌋
2. K-means Clustering: Partition features into (nc − 1) clusters

3. Density Map Computation: For cluster Ci with features Fi :

ρi (x) =
∑

j ,k∈Fi

K

(
d(xj , xk)

scale

)
(1)

where K (z) = e−(z)
p
(Exponential) or K (z) = 1

1+zp (Lorentz)
4



CCP Density Computation: Algorithmic Details

Algorithm 1 CCP Correlation Computation
1: function ComputeCorrelations(idx comp, idx Feat, X, transform)

2: if transform then

3: D← pairwise distances(X[:, idx Feat],Xref [:, idx Feat])

4: else

5: D← pairwise distances(Xref [:, idx Feat])

6: end if

7: if avgmindist[idx comp] = 0 then

8: avgmindist[idx comp]← 1
N

∑N
i=1 minj ̸=i Dij

9: end if

10: if cutoff [idx comp] = 0 then

11: µD ← mean(D), σD ← std(D)

12: cutoff [idx comp]← µD + 3σD

13: end if

14: scale ← user scale × avgmindist[idx comp]

15: ρ← computeDensity(D, scale, cutoff [idx comp])

16: return ρ

17: end function

Bottleneck: Pairwise distance computation D ∈ RN×N requires O(N2 · fi ) operations
per cluster

5



Proposed CCP-NN Algorithm



CCP-NN: Approximate Nearest Neighbor Enhancement

Key Innovation: Replace exact pairwise distances with

ANN search

AnnoyIndex Properties:

• Data Structure: Forest of random projection trees

• Build Complexity: O(N logN · f )
• Query Complexity: O(logN) per query

• Space Complexity: O(N · f )
Approximation Quality:

E[||Nk(xi )− Ñk(xi )||] ≤ ϵ (2)

Root

H1 H2

H3 H4 H5 H6

Random Projection Tree

Modification: Only Step 5 (density computation) changes; Steps 1-4 and 6-7 remain

identical
6



CCP-NN Algorithm: Technical Implementation

Algorithm 2 CCP-NN Nearest Neighbor Correlation Computation
1: function NearestNeighborComputeCorr(idx comp, idx Feat, X, transform)

2: idx ← AnnoyIndex(len(idx Feat),metric)

3: for i = 0 to len(Xref [:, idx Feat]) do

4: idx .add item(i ,Xref [:, idx Feat][i ])

5: end for

6: idx .build(−1) ▷ Build index with all trees

7: if transform then

8: ρ← [idx .get nns by vector(feat, k) for feat in X[:, idx Feat]]

9: else

10: ρ← [idx .get nns by item(i , k) for i in range(N)]

11: end if

12: ρ← reshape(ρ, (−1, 1))
▷ Same scaling and cutoff computation as CCP

13: scale ← user scale × avgmindist[idx comp]

14: ρ← computeDensity(ρ, scale, cutoff [idx comp])

15: return ρ

16: end function
7



Complexity Analysis



Theoretical Complexity Comparison

Algorithm Time Complexity Space Complexity

CCP
O(N · f (nc · niter + N))

O(N(M + N))
Dominated by O(N2 · f )

CCP-NN
O(N · f (nc · niter + logN))

O(N(M + logN · f ))
Dominated by O(N logN · f )

Asymptotic Improvement:

Speedup Factor =
O(N2)

O(N logN)
=

N

logN
(3)

Concrete Example: For N = 104, f = 100, nc = 10:

• CCP: ∼ 109 operations

• CCP-NN: ∼ 1.3× 106 operations

• Theoretical speedup: ∼ 770× 8



Convergence Analysis



Theoretical Convergence Guarantees

Setup: Let X ∼ P(X) with density p(x)

Approximation Error: AnnoyIndex provides ϵ-approximate nearest neighbors:

E[||Nk(xi )− Ñk(xi )||] ≤ ϵ (4)

Density Estimation: CCP-NN density estimate:

p̂(xi ) =
1

hk

∑
xj∈Ñk (xi )

K

(
xi − xj

h

)
(5)

Error Bound: Using triangle inequality:

|p̂(xi )− p(xi )| ≤ |p̂(xi )− p(xi , Ñk(xi ))|+ |p(xi , Ñk(xi ))− p(xi )| (6)

Final Result:

E[|p̂(xi )− p(xi )|] ≤ O
(
ϵ+ h4 +

1

kh

)
(7) 9



Experimental Validation



Datasets and Experimental Setup

Dataset Samples Classes Type Avg. Length

Protein Subcellular 5,959 11 Protein 934

Coronavirus Host 5,558 21 Spike Protein 1,273

Human DNA 4,380 7 Nucleotide 4,380

Embedding Methods:

• OHE: One-Hot Encoding

• Spike2Vec: Word2Vec-based protein embeddings

• PWM2Vec: Position Weight Matrix embeddings

• Autoencoder: Neural network-based embeddings

Evaluation: 7 classifiers × 5-fold CV × 5 random runs = 175 experiments per method

10



Performance Results: Accuracy & Runtime

Method Accuracy ∆

OHE + CCP 0.712 -

OHE + CCP-NN 0.752 +5.6%

Spike2Vec + CCP 0.784 -

Spike2Vec + CCP-NN 0.812 +3.6%

PWM2Vec + CCP 0.801 -

PWM2Vec + CCP-NN 0.834 +4.1%

Autoencoder + CCP 0.823 -

Autoencoder + CCP-NN 0.859 +4.4%

Table 1: Protein Subcellular Dataset

Method Runtime (s) Speedup

OHE + CCP 124.5 -

OHE + CCP-NN 95.5 1.3×
Spike2Vec + CCP 87.2 -

Spike2Vec + CCP-NN 24.1 3.6×
PWM2Vec + CCP 203.7 -

PWM2Vec + CCP-NN 89.8 2.3×
Autoencoder + CCP 315.4 -

Autoencoder + CCP-NN 22.5 14×

Table 2: Runtime Comparison

Key Findings:

• Consistent accuracy improvements across all embedding methods

• Significant runtime reductions, especially with dense embeddings

• Better approximation quality leads to improved classification performance
11



Scalability Analysis

1,000 2,000 3,000 4,000 5,000 6,000
0

50

100

150

200

250

300

350

Dataset Size (N)

R
u
n
ti
m
e
(s
ec
on

d
s)

CCP
CCP-NN

Scaling Behavior:

CCP shows quadratic growth pattern, while

CCP-NN exhibits near-linear scaling.

Memory Usage:

• CCP: O(N2) distance matrices

• CCP-NN: O(N logN) index structure

Practical Impact: For N > 104, CCP

becomes computationally prohibitive, while

CCP-NN remains tractable.

12



Technical Insights & Future

Directions



Key Technical Contributions

Algorithmic Innovation

• Hybrid: CCP’s correlation-based clustering while leveraging ANN efficiency

• Theoretical Guarantees: Formal converg. analysis with bounded approx. error

• Practical Scalability: Reduces complexity from O(N2) to O(N logN)

Empirical Validation

• Accuracy Improvement: Up to 10.8% better classification performance

• Runtime Efficiency: Up to 14× speedup on real biological datasets

• Robustness: Consistent improvements across multiple embedding methods

Future Research Directions

• Deep Integration: Incorporation with transformer-based protein language models

• Multi-scale Analysis: Extension to hierarchical biological sequence structures

• Distributed Computing: Parallel implementation for genome-scale datasets 13



Conclusion

CCP-NN: Bridging Theory and Practice

Theoretical Contributions:

• Rigorous complexity analysis

• Convergence guarantees

• Approximation error bounds

Practical Impact:

• Enables large-scale sequence analysis

• Maintains classification quality

• Significant computational savings

CCP-NN

Better Accuracy

Faster Runtime

Lower Memory

Scalable

Enabling next-generation computational biology through efficient algorithmic

design

14



Thank You!

Questions & Discussion

sa4559@cumc.columbia.edu

14


	Problem Formulation & Motivation
	Correlated Clustering and Projection (CCP)
	Proposed CCP-NN Algorithm
	Complexity Analysis
	Convergence Analysis
	Experimental Validation
	Technical Insights & Future Directions

