Nearest Neighbor CCP-Based Molecular Sequence Analysis

An Efficient Approach for High-Dimensional Biological Data

Sarwan Alil, Prakash Chourasia?, Bipin Koirala?3, Murray Patterson?

IEEE Transactions on Computational Biology and Bioinformatics (TCBB) 2025

1Columbia University 2Georgia State University 3Georgia Institute of Technology

Problem Formulation & Motivation
Correlated Clustering and Projection (CCP)
Proposed CCP-NN Algorithm

Complexity Analysis

Convergence Analysis

Experimental Validation

Technical Insights & Future Directions

Problem Formulation & Motivation

Computational Challenges in Molecular Sequence Analysis

High-Dimensional Data Challenges:
e Curse of Dimensionality: Feature spaces RM with M > N
e Sparsity: Biological sequences create sparse feature
representations Runtime O(N?)

e Computational Complexity: O(N?M) pairwise

computations O(Nlog N)
e Memory Requirements: O(N?) distance matrices /
Existing DR Limitations: N (samples)

Scalability Problem
e Linear methods (PCA, LDA): Assume linear relationships

e Non-linear methods: Computationally prohibitive for large N

e CCP: Promising but O(N?) bottleneck

Correlated Clustering and Projection
(CCP)

CCP Algorithm: Mathematical Foundation

Input: Dataset X € RV*M ‘where N = samples, M = features

Objective: Find low-dimensional embedding ¢ccp : RM — R
CCP Pipeline

1. Variance-based Feature Selection: Select top f features where
f = [numCutoff x |{j : Var(X;) > 0}|]

2. K-means Clustering: Partition features into (n. — 1) clusters
3. Density Map Computation: For cluster C; with features F;:
d(x;,Xk)
A5 = K| =22/ 1
pilx) Z (scale (1)
Jvkej:i

where K(z) = e=(9)” (Exponential) or K(z) = lep (Lorentz)

CCP Density Computation: Algorithmic Details

Algorithm 1 CCP Correlation Computation

1: function COMPUTECORRELATIONS(idx_comp, idx_Feat, X, transform)
if transform then
3 D < pairwise_distances(X[:, idx_Feat], X, [:, idx_Feat])
4 else
B D < pairwise_distances(Xef[:, idx_Feat])
6: end if
7.
8

if avgmindist[idx_comp] = 0 then
: avgmindist[idx_comp] < % ZIN:I min;; D
9: end if

10: if cutoff[idx_comp] = 0 then

11: up + mean(D), op + std(D)

12: cutoff[idx_comp] < pp + 30p

13: end if

14: scale < user_scale x avgmindist[idx_comp)]

15: p < computeDensity(D, scale, cutoff [idx_comp])
16: return p

17: end function

Proposed CCP-NN Algorithm

CCP-NN: Approximate Nearest Neighbor Enhancement

Key Innovation: Replace exact pairwise distances with
ANN search

AnnoylIndex Properties:
e Data Structure: Forest of random projection trees @

e Build Complexity: O(Nlog N - f) @ @
e Query Complexity: O(log N) per query @ @ @ @

e Space Complexity: O(N - f)

Random Projection Tree
Approximation Quality:
E[||NVk(x) — Ni(xi)ll] < e (2)

Modification: Only Step 5 (density computation) changes; Steps 1-4 and 6-7 remain
identical

CCP-NN Algorithm: Technical Implementation

Algorithm 2 CCP-NN Nearest Neighbor Correlation Computation

1: function NEARESTNEIGHBORCOMPUTECORR(idx_comp, idx_Feat, X, transform)
2: idx <— Annoylndex(len(idx_Feat), metric)

3: for i = 0 to len(X,f[:, idx_Feat]) do
4: idx.add _item(i, Xf[:, idx_Feat][i])
5 end for
6: idx.build(—1) > Build index with all trees
7 if transform then
8: p < [idx.get_nns_by _vector(feat, k) for feat in X[:, idx_Feat]]
9: else
10: p < lidx.get_nns_by_item(i, k) for i in range(N)]
11: end if

12: p < reshape(p, (—1,1))
> Same scaling and cutoff computation as CCP

13: scale +— user_scale x avgmindist[idx_comp]
14: p < computeDensity(p, scale, cutoff[idx_compl])
15: return p

16: end function

Complexity Analysis

Theoretical Complexity Comparison

Algorithm Time Complexity Space Complexity
O(N - f(nc - niter + N))
Dominated by O(N?2 - f)

O(N - f(nc - njter + log N))

Dominated by O(Nlog N - f)

CCP O(N(M + N))

CCP-NN O(N(M + log N - £))

Asymptotic Improvement:
O(N?) N (3)
O(NlogN) log N

Speedup Factor =

Concrete Example: For N = 10%, f = 100, n. = 10:

e CCP: ~ 10° operations
e CCP-NN: ~ 1.3 x 10° operations
e Theoretical speedup: ~ 770x 3

Convergence Analysis

Theoretical Convergence Guarantees

Setup: Let X ~ P(X) with density p(x)

Approximation Error: Annoylndex provides e-approximate nearest neighbors:

E[||Vk(xi) = M)l < e (4)
Density Estimation: CCP-NN density estimate:
R 1 Xj — X;
px) = X K (5)
XjENk(X,)

Error Bound: Using triangle inequality:
1B(xi) — p(xi)| < [B(xi) = p(xi, Nic(xi)| + |p(xi Nie(xi)) = p(x;)] (6)

Final Result:

Bo0x) — p(x)] < O (e 4+) U

Experimental Validation

Datasets and Experimental Setup

Dataset Samples | Classes Type Avg. Length
Protein Subcellular 5,959 11 Protein 934
Coronavirus Host 5,558 21 Spike Protein 1,273
Human DNA 4,380 7 Nucleotide 4,380

Embedding Methods:

OHE: One-Hot Encoding
Spike2Vec: Word2Vec-based protein embeddings
PWM2Vec: Position Weight Matrix embeddings

Autoencoder: Neural network-based embeddings

Evaluation: 7 classifiers x 5-fold CV x 5 random runs = 175 experiments per method

10

Performance Results: Accuracy & Runtime

Method Accuracy A Method Runtime (s) | Speedup
OHE + CCP 0.712 - OHE + CCP 1245 -
OHE - CCP-NN 0.752 +5.6% OHE + CCP-NN 95.5 1.3x
Spike2Vec + CCP 0.784 - Spike2Vec + CCP 87.2 -
Spike2Vec + CCP-NN 0812 | +3.6% Spike2Vec - CCP-NN 041 3.6
PWM2Vec + CCP 0.801 - PWM2Vec + CCP 203.7 =
PWM2Vec + CCP-NN 0834 | +4.1% PWM2Vec + CCP-NN 80.8 2.3x
Autoencoder 4 CCP 0.823 B Autoencoder + CCP 315.4 -
Autoencoder + CCP-NN 0.859 +4.4% Autoencoder + CCP-NN 22,5 14x

Table 1: Protein Subcellular Dataset Vel 25 Rumifine Comperizen

Key Findings:

e Consistent accuracy improvements across all embedding methods
e Significant runtime reductions, especially with dense embeddings

e Better approximation quality leads to improved classification performance
11

Scalability Analysis

Scaling Behavior:

350

300 | & ccp 1 CCP shows quadratic growth pattern, while
m — CCP-NN o . .
T o0 —n—— | CCP-NN exhibits near-linear scaling.
§ 200 3
Z Memory Usage:
g 150 . o s .
£ 100 e CCP: O(N?) distance matrices
c 1 -
& 50 e CCP-NN: O(N log N) index structure

| | | | |
19000 2,000 3,000 4,000 5,000 6,000Practical Impact: For N > 10%, CCP
Dataset Size (N) becomes computationally prohibitive, while

CCP-NN remains tractable.

12

Technical Insights & Future
Directions

Key Technical Contributions

Algorithmic Innovation
e Hybrid: CCP’s correlation-based clustering while leveraging ANN efficiency
e Theoretical Guarantees: Formal converg. analysis with bounded approx. error
e Practical Scalability: Reduces complexity from O(N?) to O(N log N)
Empirical Validation
e Accuracy Improvement: Up to 10.8% better classification performance
e Runtime Efficiency: Up to 14x speedup on real biological datasets

e Robustness: Consistent improvements across multiple embedding methods
Future Research Directions

e Deep Integration: Incorporation with transformer-based protein language models

e Multi-scale Analysis: Extension to hierarchical biological sequence structures

e Distributed Computing: Parallel implementation for genome-scale datasets 13

Conclusion

CCP-NN: Bridging Theory and Practice

Theoretical Contributions:

e Rigorous complexity analysis

e Convergence guarantees Better Accuracy
e Approximation error bounds T
Practical Impact: Scalable «<— CCP-NN

— Faster Runtime

e Enables large-scale sequence analysis l

e Maintains classification quality

Lower Memory

e Significant computational savings

14

Thank You!

Questions & Discussion

sa4559@cumc.columbia.edu

	Problem Formulation & Motivation
	Correlated Clustering and Projection (CCP)
	Proposed CCP-NN Algorithm
	Complexity Analysis
	Convergence Analysis
	Experimental Validation
	Technical Insights & Future Directions

