

Hilbert Curve Based Molecular Sequence Analysis

A Novel Image-Based Deep Learning Approach

Sarwan Ali^{1*}, Tamkanat E Ali^{3*}, Imdad Ullah Khan³, Murray Patterson²

¹Columbia University, Irving Medical Center, NY, USA ²Georgia State University, Atlanta, GA, USA

³Lahore University of Management Sciences, Pakistan

Outline

- Introduction & Motivation
- 2 Background & Related Work
- Proposed Methodology
- 4 Experimental Setup
- 5 Results & Analysis

▶ ∢ ⊒

The Challenge in Molecular Sequence Analysis

Key Problems:

- Traditional vector-based embeddings show suboptimal performance with Deep Learning models
- Neural networks struggle with tabular data due to:
 - Feature sparsity
 - Varying scales
 - Lack of spatial correlations
- Existing image-based methods fail to capture spatial information

Our Solution

Universal Hilbert Curve-based Chaos Game Representation (CGR) with novel Alphabetic Index Mapping

Poor DL Better DL

Sarwan et al. (Universities)

Hilbert Curve Based Molecular Sequence Analysis

PAKDD 2025

3/22

Research Contributions

- Ovel Universal Method: First universal Hilbert curve-based CGR approach applicable to any molecular sequence type
- Alphabetic Index Mapping: Innovative technique for constructing Hilbert curve-based image representations
- Superior Performance: Achieves 94.5% accuracy and 93.9% F1-score on lung cancer dataset
- **O Broad Applicability**: Method extends beyond molecular sequences to NLP domain
- Omprehensive Evaluation: Rigorous testing on multiple datasets with various deep learning architectures

프 에 에 프 어

Sequence Representation Methods

Vector-Based Methods:

- Feature Engineering (PWM2Vec, AAC, PAAC)
- NLP-based (SeqVec, PRoBERTa, ESM2)
- Neural Networks (Autoencoder)
- Kernel-based methods

Limitations:

- Poor performance with CNN/DL models
- Loss of spatial information
- Feature sparsity issues

Gap in Literature

Image-Based Methods:

- Chaos Game Representation (CGR)
- Frequency CGR (FCGR)
- Spike2CGR
- Random CGR

Advantages:

- Better DL performance
- Preserve 2D spatial relationships
- Suitable for CNN architectures

Existing Hilbert curve methods lack universality - our approach provides the first universal solution

Sarwan et al. (Universities)

Hilbert Curve Based Molecular Sequence Analysis

Hilbert Curve Properties

Why Hilbert Curves?

- Space-filling curve: Maps 1D sequences to 2D plane
- Spatial locality preservation: Close points in 1D remain close in 2D
- Superior to alternatives: Better than Z-order, Peano curves
- Self-similarity: Fractal properties maintain structure at multiple scales

Mathematical Foundation:

$$\Theta = 2^{p \times N}$$

where p = iterations, N = dimensions For 64×64 images: p = 6, N = 2

$$\Theta = 2^{6 \times 2} = 2^{12} = 4096$$
 points

Sarwan et al. (Universities)

Order 1

Order 2

ഹ

6/22

Self-Similar Space-Filling

PAKDD 2025

Method Overview

Key Innovation

Universal alphabetic index mapping enables application to any molecular sequence alphabet (DNA: $\{A,T,G,C\}$, Protein: 20 amino acids, etc.)

Sarwan et al. (Universities)

Hilbert Curve Based Molecular Sequence Analysis

Alphabetic Index Mapping

Algorithm 1 Alphabetic Index Mapping						
1:	function $IndexMapping(c, A)$					
2:	for a in A do					
3:	if $a = c$ then					
4:	I = A.index(c)					
5:	end if					
6:	end for					
7:	return /					
8: end function						
Mathematical Formulation:						

 $I = IndexMapping(c), c \in A$

where A is the alphabet set and c is a character.

Examples:

DNA Alphabet: $A = \{A, T, G, C\}$

• A \rightarrow Index = 0, T \rightarrow Index = 1

• G
$$\rightarrow$$
 Index = 2, C \rightarrow Index = 3

Protein Alphabet: $A = \{A, R, N, D, ...\}$ (20 amino acids)

- $A \rightarrow Index = 0$
- $\bullet \ \mathsf{R} \to \mathsf{Index} = 1$
- $\bullet \ \ldots \ and \ so \ on$

Universal Property

Works with any alphabet size and composition!

Sarwan et al. (Universities)

Hilbert Curve Based Molecular Sequence Analysis

PAKDD 2025

A = A = A = A = A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

8/22

Distance Calculation & Coordinate Mapping

Distance Calculation:

$$D = \frac{I}{L} \times \Theta$$

- I = Alphabetic index of character
- L = Length of sequence
- $\Theta = 2^{p \times N}$ = Total points on Hilbert curve

Coordinate Transformation Process:

- **O Binary Representation:** $Bits = Binary(D) = b_{n-1}b_{n-2}...b_0$
- Bit Interleaving: 2

$$EvenIdxBits = b_{n-1}b_{n-3}...$$
(1)

$$OddIdxBits = b_{n-2}b_{n-4}... \tag{2}$$

Preliminary Coordinates: 3

$$x_{raw} = Decimal(EvenIdxBits)$$
(3)

$$y_{raw} = Decimal(OddIdxBits)$$
(4)
ert Curve Based Molecular Sequence Analysis PAKDD 2025 9/22

Hilbert Curve Based Molecular Sequence Analysis

Gray Code Transformation

Purpose: Minimize bit changes between successive values to preserve spatial locality **Gray Code Equations:**

$$\begin{aligned} x_{gray} &= x_{raw} \oplus (x_{raw} \gg 1) \\ y_{grav} &= y_{raw} \oplus (y_{raw} \gg 1) \end{aligned} \tag{5}$$

where \oplus is XOR operation and \gg is right shift. Coordinate Refinement (Inverse Gray Code):

$$x = InverseGrayCode(x_{gray}) \tag{7}$$

$$y = InverseGrayCode(y_{gray})$$
(8)

Iterative Inverse Process:

$$x = x_{gray}$$
, For $i = n - 2$ to $0: x_i = x_i \oplus x_{i+1}$

Spatial Locality Preservation

Gray code transformation ensures that points close in 1D sequence remain close in 2D Hilbert curve representation

Core Algorithm: Distance to Hilbert Point

Algorithm 2 Distance to Hilbert Curve Point							
1:	1: function PointFromDistance (D, p)						
2:	$NumBits = N \times p$	Number of bits					
3:	Bits = Binary(D)	Distance to binary string					
4:	$OddId \times Bits \leftarrow [], EvenId \times Bits \leftarrow []$						
5:	for <i>i</i> in range(0, LenBits) do						
6:	if $i \mod 2 = 0$ then						
7:	EvenId×Bits.append(Bits[i])						
8:	else						
9:	OddId×Bits.append(Bits[i])						
10:	end if						
11:	end for						
12:	EvenIdxDeci = Decimal(EvenIdxBits)						
13:	OddIdxDeci = Decimal(OddIdxBits)						
14:	Components = [EvenId×Deci, OddId×Deci]						
15:	$GrayCode \leftarrow GenerateGrayCode(Components, n)$						
16:	$\phi \leftarrow Refining(\textit{GrayCode}, p)$						
17:	return ϕ	▷ Final (x,y) coordinates					
18:	end function						

PAKDD 2025

イロト イポト イヨト イヨト

11/22

э

Datasets & Experimental Design

Datasets Used:

- Breast Cancer ACPs: 949 sequences
- Lung Cancer ACPs: 901 sequences
- Classes: 4-class classification
 - Very active
 - Moderately active
 - Experimentally inactive
 - Virtually inactive
- Sequence Length: 5-38 amino acids
- Average Length: 14.5-20.7 amino acids

Baseline Methods:

Vector-based:

- One Hot Encoding (OHE)
- Spike2Vec, PWM2Vec
- Auto-Encoder, WDGRL
- SeqVec (pre-trained LLM)

Image-based:

• FCGR, Spike2CGR, Random CGR

DL Architectures:

- 1, 2, 3-layer CNNs, VGG19, ResNet50
- EfficientNet, DenseNet

Training Setup: 80% train, 20% test, 10% validation | Batch size: 64, Epochs: 10, LR: 0.003, Optimizer: ADAM

Evaluation Metrics

Performance Metrics:

- Accuracy: Overall classification accuracy
- Precision: True positives / (True positives + False positives)
- Recall: True positives / (True positives + False negatives)
- F1-Score: Harmonic mean of precision and recall
 - Weighted F1: Accounts for class imbalance
 - Macro F1: Unweighted average across classes
- ROC-AUC: Area Under Receiver Operating Characteristic curve
- Training Runtime: Computational efficiency measure

Experimental Environment:

- Intel i5 processor (2.40 GHz), 32 GB RAM
- Windows 10, Python implementation
- Standard cross-validation for hyperparameter tuning

Sarwan et al. (Universities)

Hilbert Curve Based Molecular Sequence Analysis

PAKDD 2025

13/22

Breast Cancer Dataset Results

Method	Model	Acc.	Prec.	Recall	F1-W F1-M	ROC-AUC	
Vector-Based N	1ethods						
OHE	-	0.609	0.853	0.609	0.676 0.395	0.678	
Auto-Encoder	-	0.832	0.802	0.832	0.804 0.431	0.645	
SeqVec	-	0.674	0.819	0.674	0.725 0.389	0.651	
Image-Based M	Image-Based Methods						
FCGR	1-Layer CNN	0.863	0.831	0.863	0.844 0.490	0.677	
FCGR	3-Layer CNN	0.800	0.640	0.800	0.711 0.222	0.500	
Spike2CGR	1-Layer CNN	0.783	0.613	0.783	0.687 0.219	0.500	
Our Method							
Ours	1-Layer CNN	0.895	0.869	0.895	0.881 0.521	0.725	
Ours	4-Layer CNN	0.874	0.861	0.874	0.867 0.476	0.705	
Ours	ResNet50	0.853	0.837	0.853	0.841 0.465	0.690	

Key Findings

- Our method achieves 89.5% accuracy vs. best baseline of 86.3%
- Simple 1-layer CNN performs best supports Occam's razor principle
- Significant improvement in F1-Macro score: 0.521 vs. 0.490

Sarwan et al. (Universities)

Hilbert Curve Based Molecular Sequence Analysis

Lung Cancer Dataset Results

Method	Model	Acc.	Prec.	Recall F	F1-W F1-M	ROC-AUC	
Vector-Based N	Vector-Based Methods						
Auto-Encoder	-	0.910	0.908	0.910 0	0.906 0.602	0.771	
SeqVec	-	0.886	0.882	0.886 0	0.878 0.604	0.761	
Spaced k-mer	-	0.883	0.871	0.883 0	0.862 0.530	0.699	
Image-Based M	Image-Based Methods						
FCGR	3-Layer CNN	0.930	0.925	0.930 0	0.929 0.681	0.810	
FCGR	VGG19	0.921	0.919	0.921 0	0.918 0.600	0.776	
RandomCGR	VGG19	0.892	0.714	0.892 0	0.769 0.297	0.524	
Our Method							
Ours	1-Layer CNN	0.945	0.938	0.945 0	0.664	0.791	
Ours	VGG19	0.917	0.888	0.917 0	0.898 0.490	0.683	
Ours	4-Layer CNN	0.912	0.909	0.912 0	0.909 0.534	0.729	

Outstanding Performance

- 94.5% accuracy highest among all methods
- 93.9% weighted F1-score exceptional classification performance
- Outperforms sophisticated baselines like FCGR + 3-layer CNN (93.0%)

Performance Analysis & Insights

Key Observations:

- Consistent Superiority: Our method outperforms all baselines on both datasets
- Simple is Better: 1-layer CNN achieves best results
 - Supports Occam's razor principle
 - Optimal balance of simplicity vs. learning capability
- Deep Networks Struggle: EfficientNet shows poor performance (6-8% accuracy)
- Computational Efficiency: Our method has reasonable training times

Why Our Method Works:

- **Spatial Locality**: Hilbert curve preserves neighborhood relationships
- Universal Mapping: Works with any alphabet size/type
- Information Preservation: Bijective relationship prevents data loss
- **Optimal Representation**: 64×64 images provide sufficient resolution

Mathematical Guarantee

Bijective mapping: I = IndexMapping(c)ensures each character maps to unique Hilbert curve point

Computational Performance

Method	Model	Breast Cancer	Lung Cancer
FCGR	1-Layer CNN	5410.4	5023.0
FCGR	3-Layer CNN	52147.9	41247.7
Spike2CGR	1-Layer CNN	6548.0	5987.1
RandomCGR	1-Layer CNN	4982.9	5024.7
<mark>Ours</mark>	<mark>1</mark> -	2136.8	1648.9
Ours	3-Layer CNN	13544.3	16365.4
Ours	VGG19	25081.4	19265.0

Table: Training Runtime Comparison (seconds)

Efficiency Advantages

- 2-3x faster than competing image-based methods
- Scalable: Training time scales reasonably with model complexity
- Practical: Suitable for real-world deployment

Algorithmic Innovation

Core Algorithms:

1 Alphabetic Index Mapping

- Universal character-to-index conversion
- Works with any molecular alphabet

Oistance Calculation

$$D = \frac{I}{L} \times \Theta$$

where $\Theta = 2^{p \times N}$

③ Gray Code Transformation

- Preserves spatial locality
- Minimizes bit changes between successive values

Key Technical Features:

- Bijective Mapping: No information loss
- **Spatial Coherence**: Nearby sequence elements remain close in 2D
- Fractal Properties: Self-similarity at multiple scales
- Fixed Resolution: 64×64 images for standardization

Mathematical Foundation

Hilbert curve order p = 6 generates $2^6 \times 2^6 = 64 \times 64$ pixel images

18/22

Comparison with State-of-the-Art

Method	Туре	Breast Acc.	Lung Acc.	Avg. F1-W	Improvement
Auto-Encoder	Vector	83.2%	91.0%	85.5%	-
FCGR	Image	86.3%	93.0%	88.7%	-
Spike2CGR	Image	78.3%	83.3%	73.8%	-
RandomCGR	Image	80.0%	89.2%	76.0%	-
Our Method	Image	89.5%	94.5%	91.0%	+2.6%

Table: Performance Summary - Best Results

Competitive Advantages

- Consistent Performance: Best results on both datasets
- Universal Applicability: Works with any molecular sequence type
- Computational Efficiency: Faster training than competitors
- Theoretical Foundation: Strong mathematical guarantees

Broader Impact & Applications

Bioinformatics Applications:

- **Drug Discovery**: Identify therapeutic peptides
- Disease Diagnosis: Biomarker classification
- Protein Function: Predict biological activity
- Genomics: DNA/RNA sequence analysis

Beyond Biology:

- Natural Language Processing
- Time Series Analysis
- Any sequential data with spatial patterns

Research Contributions:

- Methodological Innovation: Novel sequence-to-image transformation
- Oniversal Framework: Applicable to diverse molecular alphabets
- Performance Breakthrough: State-of-the-art results on benchmark datasets
- Computational Efficiency: Practical for real-world deployment

Future Directions

Integration with transformer architectures and multi-modal learning approaches

Conclusion

Key Achievements

- 94.5% accuracy on lung cancer peptide classification
- 89.5% accuracy on breast cancer peptide classification
- Universal method applicable to any molecular sequence type
- Computationally efficient with 2-3x faster training times

Scientific Impact

- Bridges computer vision and bioinformatics through novel sequence representation
- Theoretical foundation with bijective mapping guarantees
- Practical significance for drug discovery and disease detection
- Extensible framework for future research directions

References

- Sagan, H. (1994). Hilbert's space-filling curve. In *Space-filling curves* (pp. 9-30).
- Löchel, H.F., Heider, D. (2021). Chaos game representation and its applications in bioinformatics. *Computational and Structural Biotechnology Journal*, 19, 6263-6271.
- Löchel, H.F., Eger, D., Sperlea, T., Heider, D. (2020). Deep learning on chaos game representation for proteins. *Bioinformatics*, 36(1), 272-279.
- Grisoni, et al. (2019). De novo design of anticancer peptides by ensemble artificial neural networks. *Journal of Molecular Modeling*, 25(5), 112.
- Yin, B., Balvert, M., Zambrano, D., Schönhuth, A., Bohte, S. (2018). An image representation based convolutional network for DNA classification. *arXiv preprint arXiv:1806.04931*.

3