Efficient Data Analytics on Augmented Similarity Triplets

Sarwan Ali

joint work with

I. U. Khan, M Ahmad, U Hassan, M A Khan, S Alam
Big Data Analytics

Clustering
Classification
Centrality
Median
Neighbor
Outlier
Analysis

Data Analysis using Similarity Comparisons
Feature Vector Representation

$n \times m$ data matrix

m features

$\begin{bmatrix}
 x_{11} & x_{12} & \cdots & \cdots & x_{1m} \\
 x_{21} & x_{22} & \cdots & \cdots & x_{2m} \\
 \vdots & \vdots & \ddots & \ddots & \vdots \\
 x_{n1} & x_{n2} & \cdots & \cdots & x_{nm}
\end{bmatrix}$

Clustering
Classification
Centrality
Median
Outlier
Neighbor

Analysis

Data Analysis using Similarity Comparisons
Issues with Explicit Representation

Explicit representation of objects may not be available or meaningful

- No meaningful coordinates for text/image/customer
Representation Learning

Map objects to vectors

Apply vector space machine learning algorithm

Feature Space

\(\mathbb{R}^m \)
Analytics Require Similarity Measures

Notion of similarity is **sufficient** for data analysis algorithms

- **Classification/Clustering:** Group “similar” items
- **Outlier Detection:** Identify items “dissimilar” from others
- **Centrality Computation:** Evaluate “similarity” of an item to all others
- **Nearest Neighbor:** Find the most “similar” objects to a query object
- **Median:** Find the item most “similar” to all others
- **Recommendation:** Recommend item j to user i if users “similar” to i like items “similar” to j
- **Locality Sensitive Hashing:** “Similar” items go to same bucket
- **Reduce dimensionality:** While preserving pairwise “similarities”
Analytics using Similarity

Similarity/Distance Matrix

- Used for Agglomerative clustering, Kernel SVM, Kernel PCA, ...
- Usually computed from explicit representation of objects

<table>
<thead>
<tr>
<th>n objects</th>
<th>m features</th>
</tr>
</thead>
<tbody>
<tr>
<td>x_{11}</td>
<td>x_{12}</td>
</tr>
<tr>
<td>x_{21}</td>
<td>x_{22}</td>
</tr>
<tr>
<td>\vdots</td>
<td>\vdots</td>
</tr>
<tr>
<td>x_{n1}</td>
<td>x_{n2}</td>
</tr>
</tbody>
</table>

$n \times m$ data matrix

0	d_{12}	\cdots	\cdots	d_{1n}
d_{21}	0	\cdots	\cdots	d_{2n}
\vdots	\vdots	\ddots	\ddots	\vdots
d_{n1}	d_{n2}	\cdots	\cdots	0

$n \times n$ distance matrix
Issues with Proximity Measures

Distance function may not be very meaningful

- Which two images are more similar based on shape/purpose?
Issues with Proximity Measures

Distance function may not be very meaningful

- Which two images are more similar based on shape/purpose? RGB values of images may not encode perception of images
Human Based Computation

[Image of a cow and a scale]
The Wisdom of Crowds

average of 800 guesses = 1,197
actual weight of the ox = 1,198
Human Based Comparisons

Humans have a hard time to

- Explain embedding coordinate
- Quantify a coordinate value
- Evaluate pairwise similarity $\text{sim}(A, B) =$?
Human Based Comparisons

Humans have a hard time to

- Explain embedding coordinate
- Quantify a coordinate value
- Evaluate pairwise similarity $\text{sim}(A, B) = ?$

But humans are good at

- Differentiating things perceptually
- Comparing objects’ features
- Comparing pairwise similarities $\text{sim}(A, B) > \text{sim}(A, C)$?
Humans can easily assess that

A car is more similar to a jeep as compared to a truck, by utility
Human Based Comparisons

Humans can easily assess that

Ice cream and cookies are more similar, based on taste
Humans can easily assess that Rocky mountains and snow-covered peak are similar, by scenic view.
Encoding Comparison Result

Comparison of pairs-wise similarities of three objects encoded as triplets.
Comparison of pairs-wise similarities of three objects encoded as triplets

\[x \text{ is the outlier among the three} \]

Outlier: \((x, y, z)_O\)

\[(x, y, z)_O \implies d(x, y) > d(y, z) \text{ AND } d(x, z) > d(y, z)\]
Comparison of pairs-wise similarities of three objects encoded as **triplets**

- **Outlier:** \((x, y, z)_O\)
 \[(x, y, z)_O \implies d(x, y) > d(y, z) \text{ AND } d(x, z) > d(y, z)\]

 \(x\) is the outlier among the three

- **Central:** \((x, y, z)_C\)
 \[(x, y, z)_C \implies d(x, y) < d(y, z) \text{ AND } d(x, z) < d(y, z)\]

 \(x\) is the central among the three

\[\text{Outlier: } (x, y, z)_O \quad \text{Central: } (x, y, z)_C\]
Comparison of pairs-wise similarities of three objects encoded as triplets

\[(x, y, z)_O \implies d(x, y) > d(y, z) \text{ AND } d(x, z) > d(y, z) \]

Outlier: \((x, y, z)_O\)

\[(x, y, z)_C \implies d(x, y) < d(y, z) \text{ AND } d(x, z) < d(y, z) \]

Central: \((x, y, z)_C\)

\[(x, y, z)_A \implies d(x, y) < d(x, z) \]

Anchor: \((x, y, z)_A\)

\[x \text{ is the outlier among the three} \]

\[x \text{ is the central among the three} \]

\[x \text{ is the closer to } y \text{ than } z \]
Convert anything to anchor

Comparison of pairs-wise similarities of three objects encoded as triplets

Comparison of pairs-wise similarities of three objects encoded as triplets
Convert anything to anchor

Comparison of pairs-wise similarities of three objects encoded as **triplets**

Anchor triplet contains the least information

Out of the 3 pairwise distances comparisons, it only provides two

\[(x, y, z)_O \implies (y, x, z)_A \text{ AND } (z, x, y)_A\]

\[(x, y, z)_C \implies (y, z, x)_A \text{ AND } (z, y, x)_A\]
Too many triplets

Since comparisons are easier than computation for humans, triplets are obtained from human sources.
Too many triplets

Since comparisons are easier than computation for humans, triplets are obtained from human sources.

Distance matrix needs a number of for \(\binom{n}{2} \) pairs of objects.

The total number of triplets are \(\binom{n}{3} \)

\[n = 300, \quad \binom{n}{2} = 44,850, \quad \binom{n}{3} = 24,503,050 \]
Too many triplets

Since comparisons are easier than computation for humans, triplets are obtained from human sources.

Distance matrix needs a number of for $\binom{n}{2}$ pairs of objects.

The total number of triplets are $\binom{n}{3}$

\[n = 300, \binom{n}{2} = 44,850 \quad \binom{n}{3} = 24,503,050 \]

Statistics to the rescue to avoid getting too many triplets.

To estimate a number, no need to measure the whole population or even a percentage of it. A random sample of 1000 can give decent results!

So measure only a small (preferably random) sample of anchor triplets.
Comparison result as relative ordering

Fix an ordering on objects x_1, x_2, \ldots, x_n

For every object x, consider all triplets with x as anchor

For a pair $x_i, x_j \neq x$, either $(x, x_i, x_j)_A$ or $(x, x_j, x_i)_A$ is possible

$\Phi(x)$ is an $\binom{n}{2}$-dim vector encoding relative ordering of objects w.r.t x

$$\Phi(x) = \begin{pmatrix} (1,2) & \cdots & (2,4) & \cdots & (4,7) & \cdots & (6,7) & (6,8) & \cdots & (n-1,n) \end{pmatrix}$$

$$\Phi(x)(i,j) = \begin{cases} 1 & \text{if } (x, x_i, x_j)_A \text{ is a triplet} \\ -1 & \text{if } (x, x_j, x_i)_A \text{ is a triplet} \\ 0 & \text{else} \end{cases}$$
Feature Vector From Triplets

\(\Phi(x_i) \) is an \(\binom{n}{2} \)-dim vector encoding relative ordering of objects w.r.t \(x_i \)

\[
\mathcal{T} = \begin{bmatrix}
(x_3, x_2, x_1) \\
(x_3, x_2, x_4) \\
(x_3, x_4, x_7) \\
(x_3, x_7, x_6) \\
\vdots
\end{bmatrix}
\]

\(\Phi(x_3) = \begin{bmatrix}
(1, 2) & \ldots & (2, 4) & \ldots & (4, 7) & \ldots & (6, 7) & (6, 8) & \ldots & (n-1, n)
\end{bmatrix}
\)
Feature Vector From Triplets

\(\Phi(x_i) \) is an \(\binom{n}{2} \)-dim vector encoding relative ordering of objects w.r.t \(x_i \)

\[
\mathcal{T} = \begin{bmatrix}
(x_3, x_2, x_1) \\
(x_3, x_2, x_4) \\
(x_3, x_4, x_7) \\
(x_3, x_7, x_6) \\
\vdots
\end{bmatrix}
\]

\[
\Phi(x_3) = \begin{bmatrix}
-1 \\
(1, 2) \\
(2, 4) \\
(4, 7) \\
(6, 7) \\
(6, 8) \\
(\ldots) \\
(n-1, n)
\end{bmatrix}
\]
Feature Vector From Triplets

\(\Phi(x_i) \) is an \(\binom{n}{2} \)-dim vector encoding relative ordering of objects w.r.t \(x_i \)

\[
\mathcal{T} = \begin{bmatrix}
(x_3, x_2, x_1) \\
(x_3, x_2, x_4) \\
(x_3, x_4, x_7) \\
(x_3, x_7, x_6) \\
\vdots
\end{bmatrix}
\]

\[
\Phi(x_3) = \begin{bmatrix}
1 \\
(1, 2) \\
(2, 4) \\
(4, 7) \\
(6, 7) \\
(6, 8) \\
(n-1, n)
\end{bmatrix}
\]
Feature Vector From Triplets

\(\Phi(x_i) \) is an \(\binom{n}{2} \)-dim vector encoding relative ordering of objects w.r.t \(x_i \)

\[
\mathcal{T} = \begin{bmatrix}
(x_3, x_2, x_1) \\
(x_3, x_2, x_4) \\
(x_3, x_4, x_7) \\
(x_3, x_7, x_6) \\
\vdots
\end{bmatrix} \quad \Phi(x_3) = \begin{bmatrix}
(1, 2) \\
(2, 4) \\
(4, 7) \\
(6, 7) \\
(6, 8) \\
(n-1, n)
\end{bmatrix}
\]
Pairwise Similarity from Triplets

- $\Phi(x)[\cdot] - \Phi(y)[\cdot] = 0 \implies a, b$ ordered the same from x and y
- $\Phi(x)[\cdot] - \Phi(y)[\cdot] = \pm 2 \implies a, b$ ordered differently from x and y
- $\Phi(x)[\cdot] - \Phi(y)[\cdot] = \pm 1 \implies a, b$ ordered from one but not from other

$\Phi(x) \cdot \Phi(y)$ is agreements minus disagreements of pairs orders from x & y

We use this dot product as a kernel ➤ a pairwise similarity measure

$$K(x_i, x_j) = \Phi(x_i) \cdot \Phi(x_j)$$
Issues with Kernel

We want a total order on the \(n - 1 \) other objects with respect to an anchor.

With limited number of triplets we only get a partial order.
Let \(\mathcal{X} \) be the dataset of \(n \) objects

Let \(\mathcal{T} \) be the available triplets set

Represent \(\Phi(x) \) as a **DAG** \(G_x \)

\((x, y, z)_A\) is represented as a directed edge from \(y \) to \(z \) in \(G_x \)

Formally,

\[
E(G_x) := \{(y, z) \mid y, z \in \mathcal{X}, (x, y, z) \in \mathcal{T}\}
\]
Triples Representations as DAG

\[\mathcal{T} \]

Directed Graph \(G_x \)

\[(x, v_1, v_2)\]
\[(x, v_1, v_3)\]
\[(x, v_2, v_3)\]
\[(x, v_3, v_4)\]
Triples Representations as DAG

\[\mathcal{T} \quad \text{Directed Graph } G_x \]

\[
(x,v_1,v_2)
(x,v_1,v_3)
(x,v_2,v_3)
(x,v_3,v_4)
\]

\[\mathcal{T} \quad \text{Directed Graph } G_x \]

\[
(x,v_1,v_2)
(x,v_1,v_3)
(x,v_2,v_3)
(x,v_3,v_4)
\]
Triplets Representations as DAG

\[\mathcal{T} \quad \text{Directed Graph } G_x \]

\[
(x, v_1, v_2) \\
(x, v_1, v_3) \\
(x, v_2, v_3) \\
(x, v_3, v_4)
\]

\[
v_1 \rightarrow v_2 \rightarrow v_3 \rightarrow v_4
\]

\[\mathcal{T} \quad \text{Directed Graph } G_x \]

\[
(x, v_1, v_2) \\
(x, v_1, v_3) \\
(x, v_2, v_3) \\
(x, v_3, v_4)
\]

\[v_1 \rightarrow v_2 \]

\[v_2 \rightarrow v_3 \]

\[v_3 \rightarrow v_4 \]

\[v_1 \rightarrow v_2 \rightarrow v_3 \rightarrow v_4 \]

\[(x, v_1, v_2) \\
(x, v_1, v_3) \\
(x, v_2, v_3) \\
(x, v_3, v_4) \]
Any reasonable notion of distance/similarity must be transitive

\[d(x, a) < d(x, b) \text{ AND } d(x, b) < d(x, c) \implies d(x, a) < d(x, c) \]

\[(x, a, b)_A \text{ AND } (x, b, c)_A \implies (x, a, c)_A \]

\((x, a, c)_A\) is the extra information extracted from the input

We perform transitive closure on graphs for each object
Data augmentation reveals hidden inconsistencies

Human based data is prone to error

An inconsistent pair of triplets

\[(x, y, z)_A \quad \text{AND} \quad (x, z, y)_A\]

can be revealed with data augmentation
Closeness: \(\text{close}_x(y) \) is rank of \(\text{sim}(x, y) \) in decreasing order of \(\text{sim}(x, \cdot) \)

\[
\text{close}_x(y) = (n - 1) - | \{ z \in \mathcal{X}, z \neq x : \text{sim}(x, z) < \text{sim}(x, y) \} |
\]

We have

- \(\text{close}_x(y) \geq \text{deg}^+_G(x, y) \) \quad \triangledown \text{lower bound}
- \(\text{close}_x(y) \leq n - \text{deg}^-_G(x, y) \) \quad \triangledown \text{upper bound}

Our estimate for \(\text{close}_x(y) \) is an average of the two bounds

\[
\text{close}'_x(y) = \frac{\text{deg}^+_G(x, y) + n - \text{deg}^-_G(x, y)}{2}
\]
Approximate k-nearest neighbors based on estimated closeness

$$k_{NN}'(x) = \{ y \mid close'_x(y) \leq k \}$$

Classification
We use k_{NN} classifier and declare class label of x as the majority among labels of objects in $k'_{NN}(x)$

k-nearest neighbor graph, k_{NNG} is a graph on vertex set \mathcal{X} such that x is adjacent to k vertices in $k_{NN}'(x)$

Clustering
We construct k_{NNG} and perform spectral clustering to get clustering \mathcal{X}
Experimental Evaluation

We evaluate the quality of our algorithms by appropriate comparison with analytics based on the true similarity matrix of \mathcal{X}, $S(i,j)$.

The following metrics are used:

- **Kernel Matrix K:** To what extent K agrees with S and how well K maintains the order of objects with respect to S.
- **Centrality and Median:** Demonstrate quality of approximate centrality by showing rank correlation between true and approximate centralities.
- **Nearest Neighbors:** Compare true and approximate nearest neighbors.
- **Clustering:** Performing spectral clustering on the nearest neighborhood graph and reporting purity.
- **Classification:** Using the kNN classifier with train-test split of 70 – 30% to perform supervised analysis.
Dataset Description (Real-World)

- **ZOO** dataset consists of 16-dimensional feature vectors of 101 animals. The dataset has 7 different classes.

- **IRIS** dataset contains 4-dimensional feature vectors of 150 flowers in 3 classes. Attributes are lengths and widths of petals and sepals.

- **GLASS** dataset contains 214 objects in 7 classes. Each object has 9 features (number of components used in composition of the glass).

- **MOONS** is a synthetic of 500 points that form two interleaving half circles. Each point is 2-dimensional and the dataset has 2 classes.
Dataset Description (Synthetic)

- Similarity S and distance matrix D are generated from feature vectors.
- We use Euclidean similarity for IRIS, GLASS, and MOONS datasets and Cosine similarity for ZOO dataset.
- We use D and S only to generate triplets and for comparison.
- We randomly generate triplets by comparing the distances of two objects y and z from an anchor object x.
- A triplet (x, y, z) is obtained by comparing $d(x, y)$ and $d(x, z)$ such that $d(x, y) < d(x, z)$.
- We generate $\{1, 5, 10, 20\}$ % of total possible triplets and introduce relative error $= \{0, 1, 5, 10, 20\}$ % in generated triplets in experiments.
Results (Rank Correlation with True Similarity Matrix)

- Average row-wise rank correlation of K and K^* with S (true similarity matrix) for different datasets
- A higher correlation value shows more agreement with S
Results (True vs. Approximate Centrality Vectors)

- Rank correlations of true and approximate centrality vectors
- $cent'_{K}$ and $cent'_{K*}$ are centrality vectors computed from K and $K*$
Relative difference of median_τ and median_{τ^*} from the median_{true}

median_{τ^*} is generally closer to the median_{true} compared to median_τ
Results (Median Comparison With CROWD-MEDIAN)

- Relative distance of CROWD-MEDIAN and ours from median_{true}
- For CROWD-MEDIAN, type \emptyset triplets are translated to type Δ
- Our medians are closer to the median_{true} compared to $\text{median}_{\text{CROWD}}$
- $\tau\%$ shows the percentage of triplets of type \emptyset
Average percentage of approximate nearest neighbors that belong to the closest cluster of each object

\(\mathcal{T}^*(k) \) show results on augmented triplets for \(k \in \{1, 2\} \) neighbors
Results (Clustering Comparison With \textsc{LENSDEPTH})

- Purity of clusterings using $k\text{NNG}$, $k_{w\text{NNG}}$, and \textsc{LENSDEPTH} ($k = 10$)
- We perform spectral clustering on $k\text{NNG}$ and $k_{w\text{NNG}}$ graphs and consider the same number of eigenvectors as of true classes
Classification comparison of kNN with LENSDEPTH using T and T^*

- kNN shows results based on true neighbors
- In this case, $\tau \%$ shows the percentage of triplets of type C
Comparison of kNN accuracy with TRIPLETBOOST using \mathcal{T} and \mathcal{T}^*

- The bottom figure plots results on IRIS data with $\tau\% = 10$ generated with Euclidean (Eu), Cosine (Co), Cityblock (Cb) distance metrics.
Thank You