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Feature Vector Representation
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Issues with Explicit Representation

Explicit representation of objects may not be available or meaningful

= No meaningful coordinates for text/image/customer
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Representation Learning
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Analytics Require Similarity Measures

Notion of similarity is sufficient for data analysis algorithms

m Classification/Clustering: Group ‘‘similar” items

m Outlier Detection: Identify items “dissimilar” from others

m Centrality Computation: Evaluate “similarity” of an item to all others
m Nearest Neighbor: Find the most “similar” objects to a query object
m Median: Find the item most “similar” to all others

m Recommendation: Recommend item j to user / if users “similar” to i
like items “similar” to j

m Locality Sensitive Hashing: “Similar” items go to same bucket

m Reduce dimensionality: While preserving pairwise “similarities”
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Analytics using Similarity

Similarity/Distance Matrix
m Used for Agglomerative clustering, Kernel SVM, Kernel PCA, ...
m Usually computed from explicit representation of objects

m features
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Issues with Proximity Measures

Distance function may not be very meaningful

m Which two images are more similar based on shape/purpose?
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Issues with Proximity Measures

Distance function may not be very meaningful

m Which two images are more similar based on shape/purpose? RGB
values of images may not encode perception of images
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Human Based Computation
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Human Based Computation

The Wisdom of Crowds

THE WISDO
OF CROWDS
JAMES
SUROWIECKI

average of 800 guesses = 1,197
actual weight of the ox = 1,198
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Human Based Comparisons

Humans have a hard time to

m Explain embedding coordinate
m Quantify a coordinate value

m Evaluate pairwise similarity sim(A, B) =7
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Human Based Comparisons

Humans have a hard time to

m Explain embedding coordinate
m Quantify a coordinate value

m Evaluate pairwise similarity sim(A, B) =7

But humans are good at

m Differentiating things perceptually
m Comparing objects’ features
m Comparing pairwise similarities sim(A, B) > sim(A, C)?
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Human Based Comparisons

Humans can easily assess that

Car Jeep

A car is more similar to a jeep as compared to a truck, by utility
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Human Based Comparisons

Humans can easily assess that
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Icecream Steak Cookies »

Ice cream and cookies are more similar, based on taste
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Human Based Comparisons

Humans can easily assess that

Rocky montins Snow-coverd peak Seaview

Rocky mountains and snow-covered peak are similar, by scenic view
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Encoding Comparison Result

Comparison of pairs-wise similarities of three objects encoded as triplets
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Encoding Comparison Result

Comparison of pairs-wise similarities of three objects encoded as triplets

z is the outlier among the three

Outlier: (x,y,2)o

(z,y,2)0 = d(z,y) > d(y,z) AND d(z,z) > d(y, z) LT Tz
(x,y,z)o
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Encoding Comparison Result

Comparison of pairs-wise similarities of three objects encoded as triplets

z is the outlier among the three

Outlier: (x,y,2)o

(¥,y.2)0 = d(z,y) > d(y.z) AND d(x,z) > d(y, ) -
(z,y,2)o0
z is the central among the three
Central: (z,y,z)c
(v,y,2)c = d(z,y) <d(y,z) AND d(z,z) < d(y, z)
(z,y,2)c

IMDAD ULLAH KHAN (LUMS) Data Analysis using Similarity Comparisons 15 /40



Encoding Comparison Result

Comparison of pairs-wise similarities of three objects encoded as triplets

z is the outlier among the three

Outlier: (z,y,2)o

s
.

(z,y,2)0 = d(z,y) > d(y,z) AND d(z,z) > d(y, z)
(‘7;7?/7 Z)O

z is the central among the three
Central: (z,y,z)c

(v,y,2)c = d(z,y) <d(y,z) AND d(z,z) < d(y, z)
(1,7?/7 Z)C

z is the closer to y than z .

Anchor: (z,y,2)a 4

(z,y,2)4 = d(z,y) <d(z,z)

(x,y,2)a
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Convert anything to anchor

Comparison of pairs-wise similarities of three objects encoded as triplets
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Convert anything to anchor

Comparison of pairs-wise similarities of three objects encoded as triplets

Anchor triplet contains the least information
Out of the 3 pairwise distances comparisons, it only provides two
L3
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(X7y7z)0 - (yaxvz)A AND (zaxay)A

(X,y,Z)C - (y;Z,X)A AND (zay7X)A
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Too many triplets

Since comparisons are easier than computation for humans, triplets are
obtained from human sources

IMDAD ULLAH KHAN (LUMS) Data Analysis using Similarity Comparisons



Too many triplets

Since comparisons are easier than computation for humans, triplets are
obtained from human sources

Distance matrix needs a number of for (5) pairs of objects

The total number of triplets are (g)
> n =300, (5) = 44,850 (3) = 24,503,050
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Too many triplets

Since comparisons are easier than computation for humans, triplets are
obtained from human sources

Distance matrix needs a number of for (5) pairs of objects

The total number of triplets are (g)
> n =300, (5) = 44,850 (3) = 24,503,050

Statistics to the rescue to avoid getting too many triplets

To estimate a number, no need to measure the whole population or even a
percentage of it. A random sample of 1000 can give decent results!

So measure only a small (preferably random) sample of anchor triplets
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Comparison result as relative ordering

Fix an ordering on objects D> X1, X0,...,Xn
For every object x, consider all triplets with x as anchor
For a pair x;, xj # x, either (x, x;j, Xj)a or (X, X, xi)a is possible

®(x) is an (5)-dim vector encoding relative ordering of objects w.r.t x

()

(1,2) . (2,4) cee (4,7) i (6,7) 6,8)  ---- (n—1,n)
O(x) =
1 if  (x,xi,Xj)a is a triplet
O(x)(i,j) = -1 if (x,xj,x)ais a triplet

0 else
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Feature Vector From Triplets

®(x;) is an (3)-dim vector encoding relative ordering of objects w.r.t x;
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Feature Vector From Triplets

®(x;) is an (3)-dim vector encoding relative ordering of objects w.r.t x;

)

(3, w2, 21) ‘ ‘
- ’\(1,2) (2.1) @ 6,7 (6,8) s (n—1,m)
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Feature Vector From Triplets

®(x;) is an (5)-dim vector encoding relative ordering of objects w.r.t x;

— n
(w3, w2, 21) ‘ (2) ‘
3 ’\(1, 2) @1 @ 67 (6,8 o (n—1.m)
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Feature Vector From Triplets

®(x;) is an (5)-dim vector encoding relative ordering of objects w.r.t x;
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Pairwise Similarity from Triplets

m O(x)[] — P(y)[] =0 = a, b ordered the same from x and y
B O(x)[[] — (y)[] =x2 = a, b ordered differently from x and y
m O(x)[]—P(y)[] =£1 = a, b ordered from one but not from other

®(x) - d(y) is agreements minus disagreements of pairs orders from x & y
We use this dot product as a kernel > a pairwise similarity measure

K(xi, x) = ®(x;) - @(x))
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Issues with Kernel

We want a total order on the n — 1 other objects with respect to an anchor
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With limited number of triplets we only get a partial order
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Triplets Representations as DAG

m Let X be the dataset of n objects

m Let 7 be the available triplets set

Represent ®(x) as a DAG Gy

(x,y,z)a is represented as a directed edge form y to z in Gy

Formally,

E(G) :={(y,2)|y,z€ X,(x,y,2) €T}
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Triplets Representations as DAG

T Directed Graph G,
(z,v1,02)
(2, v1,03) @
(2,02, v3)
(2, v3,v4)
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Triplets Representations as DAG

T Directed Graph G,
(2,01, )
(z,v1,v3) °
(2,02, v3)
(2, v3,v4)
T Directed Graph G,
(2, v1,0)

T oo ©
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Triplets Representations as DAG

T Directed Graph G,
(2,01, )
(2, v1,v3) °
(2,02, v3)
(w,v3,04)
T Directed Graph G,
(2, v1,0)

0 ©

T Directed Graph G,
(2, v1,02)
B 0@
(2, v2,v3)
(2, v3,v4)
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Data Augmentation

Any reasonable notion of distance/similarity must be transitive

d(x,a) < d(x,b) AND d(x,b) < d(x,c) = d(x,a) < d(x,c)

(x,a,b)a AND (x,b,c)a = (x,a,C)a

(x, a, c)a is the extra information extracted form the input

We perform transitive closure on graphs for each object
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Data augmentation reveals hidden inconsistencies

Human based data is prone to error

An inconsistent pair of triplets
(vavz)A AND (X,Z,Y)A

can be revealed with data augmentation

Q0 D+
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Data Analytics from Augmented DAGs

Closeness: closei(y) is rank of sim(x,y) in decreasing order of sim(x, )

close (y) = (n—1) — |[{z € X,z # x : sim(x, z) < sim(x, y)}|

We have
m closex(y) > deg&rx(y) > lower bound
m close (y) < n— degg (y) > upper bound

Our estimate for closex(y) is an average of the two bounds

deg ™ + n— deg-
osel () = g (V) ’ gc. (V)
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Data Analytics from Augmented DAGs

Approximate k-nearest neighbors based on estimated closeness

knN'(x) = {y|close,(y) < k}

Classification
We use kNN classifier and declare class label of x as the majority among
labels of objects in k'NN(x)

k-nearest neighbor graph, KNNG is a graph on vertex set X such that x is
adjacent to k vertices in kNN’(x)

Clustering
We construct kNNG and perform spectral clustering to get clustering X
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Experimental Evaluation

We evaluate the quality of our algorithms by appropriate comparison with
analytics based on the true similarity matrix of X', S(i, ).

The following metrics are used

Kernel Matrix K: To what extent K agrees with S and how well K
maintains the order of objects with respect to &

Centrality and Median: Demonstrate quality of approximate centrality
by showing rank correlation between true and approximate centralities

Nearest Neighbors: Compare true and approximate nearest neighbors

Clustering: Performing spectral clustering on the nearest
neighborhood graph and reporting purity

Classification: Using the kNN classifier with train-test split of
70 — 30% to perform supervised analysis
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Dataset Description (Real-World)

m ZOO dataset consists of 16-dimensional feature vectors of 101
animals. The dataset has 7 different classes

m IRIS dataset contains 4-dimesnsional feature vectors of 150 flowers in
3 classes. Attributes are lengths and widths of petals and sepals

B GLASS dataset contains 214 objects in 7 classes. Each object has 9
features (number of components used in composition of the glass)

®m MOONS is a synthetic of 500 points that form two interleaving half
circles. Each point is 2-dimensional and the dataset has 2 classes
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Dataset Description (Synthetic)

m Similarity S and distance matrix D are generated from feature vectors

m We use Euclidean similarity for IRIS, GLASS, and MOONS datasets and
Cosine similarity for zoO dataset

m We use D and S only to generate triplets and for comparison

m We randomly generate triplets by comparing the distances of two
objects y and z from an anchor object x

m A triplet (x,y, z) is obtained by comparing d(x, y) and d(x, z) such
that d(x, y) < d(x, z)

m We generate {1,5,10,20} % of total possible triplets and introduce
relative error = {0,1,5,10,20} % in generated triplets in experiments
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Results (Rank Correlation with True Similarity Matrix)
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m Average row-wise rank correlation of K and K* with S (true
similarity matrix) for different datasets

m A higher correlation value shows more agreement with &
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Results (True vs. Approximate Centrality Vectors)
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m Rank correlations of true and approximate centrality vectors

m cent). and cent. are centrality vectors computed from K and K*

IMDAD ULLAH KHAN (LUMS) Data Analysis using Similarity Comparisons 33/40



Results (Median Comparison)

Relative Difference
from cent(mediansrye)

Relative Difference
from cent(mediansrye)

Relative Difference
from cent(median¢rye)
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e
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™% error %

Relative Difference
from cent(median¢rye)

‘+ mediany - ®-

mediany=

m Relative difference of mediany and mediany+ from the median;,,.

m mediany+ is generally closer to the median,,e compared to medians
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Results (Median Comparison With CROWD-MEDIAN)
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m Relative distance of CROWD-MEDIAN and ours from medianse
m For CROWD-MEDIAN, type O triplets are translated to type A
m Our medians are closer to the median,,e compared to mediancrown

m 7% shows the percentage of triplets of type O
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Results (Nearest Neighbors Comparison)
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m Average percentage of approximate nearest neighbors that belong to
the closest cluster of each object

m 7*(k) show results on augmented triplets for k € {1,2} neighbors
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Results (Clustering Comparison With LENSDEPTH)
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m Purity of clusterings using kNNG, k,NNG, and LENSDEPTH (k = 10)

m We perform spectral clustering on kNNG and k, NNG graphs and
consider the same number of eigenvectors as of true classes
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Results (Classification Comparison With LENSDEPTH)
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m Classification comparison of kNN with LENSDEPTH using 7 and T*
B kNN shows results based on true neighbors

m In this case, 7 % shows the percentage of triplets of type C
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Results (Classification Comparison With

TRIPLETBOOST)
I I 100]- I ]
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Distance Metric

‘+ T(k=10) -=- T*(k=10) —e— kNN(k=10) —e— TRIPLETBOOST

m Comparison of kNN accuracy with TRIPLETBOOST using 7 and T*

m The bottom figure plots results on IRIS data with 7 % = 10 generated
with Euclidean (Eu), Cosine (Co), Cityblock (Cb) distance metrics

IMDAD ULLAH KHAN (LUMS)

Data Analysis using Similarity Comparisons

39 /40



Thank You



