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String Kernel



Sequence Classification

Sequence analysis is fundamental in machine learning and data mining

Applications in bioinformatics, text mining, and NLP

▶ Protein homology detection

▶ Protein 3d Fold prediction

▶ Music genre classification

▶ Music artist identification

▶ Text categorization
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Problem Formulation

Input:

▶ A set of sequences X

▶ Alphabet Σ

▶ k,m

Output:

▶ Kernel Matrix K
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Kernel Value

k-spectrum and k ,m-mismatch kernel: Given a sequence X over
alphabet Σ, the k,m-mismatch spectrum of X is a |Σ|k -dimensional
vector, Φk,m(X ) of number of times each possible k-mer occurs in X
with at most m mismatches. Formally,

Φk,m(X ) = (Φk,m(X )[γ])γ∈Σk =

(∑
α∈X

Im(α, γ)

)
γ∈Σk

, (1)

where Im(α, γ) = 1, if α belongs to the set of k-mers that differ from γ
by at most m mismatches, i.e. the Hamming distance between α and γ,
d(α, γ) ≤ m. Note that for m = 0, it is known as k-spectrum of X .
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Kernel Definition

Problem: Efficient computation of k ,m-mismatch kernel for sequences
X and Y .
Kernel Definition:

K (X ,Y |k,m) =
∑
α∈X

∑
β∈Y

|Nk,m(α) ∩ Nk,m(β)| (2)

where Nk,m(α) and Nk,m(β) are m-mismatch neighborhoods of α and β
Key Facts:

▶ Im(α, β) = |Nk,m(α) ∩ Nk,m(β)| depends on k ,m, |Σ|, and d(α, β).

▶ Im(α, β) = 0 if d(α, β) > 2m.
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Algorithm for Kernel Computation

Key Steps:

▶ Compute Mi (X ,Y ): Number of k-mer pairs (α, β) with d(α, β) = i .

▶ Compute Id using closed form:

nij(α, β) =

i+j−d
2∑

t=0

(
2d − i − j + 2t

d − (i − t)

)(
d

i + j − 2t − d

)
×

(s -2)i+j−2t−d(k−d
t

)
(s − 1)t(3)

▶ Compute Fi (X ,Y ) efficiently:

Fi (X ,Y ) =
∑

θ∈Qk (k−i)

fθ(X ,Y ) (4)

▶ Approximate Fi (X ,Y ) using random sampling.
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Approximate Kernel Algorithm

Algorithm Approximate-Kernel(SX ,SY ,k ,m,ϵ, δ)

1: Initialize I, M̂, F̂ to zero
2: Populate I using closed form
3: for i = 0 to t do
4: µF ← 0
5: for θ ∈ Bi do
6: µF ← µF + sort-enumerate(SX ,SY , k , θ)

7: F̂ [i ]← µF · 1
|Bi |
(

k
k−i
)

8: M̂[i ]← F̂ [i ]
9: for j = 0 to i − 1 do

10: M̂[i ]← M̂[i ]−
(
k−j
k−i
)
· M̂[j ]

11: K ′ ← sumproduct(M̂, I)
12: return K ′

Theoretical Guarantee: Resulting kernel matrix is positive semidefinite.
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String Kernel based Sequence Classification (recall)

K

1 2 · · · i nj
1

2

i

...

n

...

j

... K(X, Y ) = Φ(X)TΦ(Y )

Kernel

· · · · · ·

Φk,m(X) =

(∑
α∈X

Im(α, γ)

)
γ∈Σk

where Im(α, γ) = 1 if d(α, γ) ≤ m

For a sequence X over Σ, the k,m-mismatch spectrum is a |Σ|k-d vector

Matrix

SVM
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String Kernel based Sequence Classification

We designed a novel method that

1. Efficient Approximate Kernel Based Spike Sequence Classification,
IEEE/ACM Transactions on Computational Biology and
Bioinformatics (2022)

▶ efficiently estimates the pairwise kernel scores K(X ,Y )

▶ has approximation guarantees on estimation quality

▶ and enabling the scalability of kernel methods for larger values of
parameters
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String Kernel To Embedding
Transformation



BioSequence2Vec Computation

▶ The BioSequence2Vec representation, x̂ for a sequence X represents
X by the random projections of Φk(X ) on the “discrete
approximations” of random directions.

▶ It allows the application of vector space-based machine learning
methods.

▶ We show that the Euclidean distance between a pair of vectors in
BioSequence2Vec representation is closely related to the kernel-based
proximity measure between the corresponding sequences.

▶ We use 4-wise independent hash functions to compute Φ′(·).
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BioSequence2Vec Computation

Definition (4-wise Independent hash function)
A family H of functions of the form h : Σk 7→ {−1, 1} is called 4-wise
independent, or 4-universal, if a randomly chosen h ∈ H has the following
properties:

1. for any α ∈ Σk , h(α) is equally likely to be −1 or 1.

2. for any distinct αi ∈ Σk , and mi ∈ {−1, 1} (1 ≤ i ≤ 4),

Pr [h(α1) = m1 ∧ . . . ∧ h(α4) = m4] = 124

Next, we give a construction of a 4-wise independent family of hash
functions due to Carter and Wegman [1]

12/ 74



BioSequence2Vec Computation

Definition
Let p be a large prime number. For integers a0, a1, a2, a3, such that
0 ≤ ai ≤ p − 1 , and α ∈ Σk (represented as integer base |Σ|), the hash
function ha0,a1,a2,a3 : Σ

k 7→ {−1, 1} is defined as

ha0,a1,a2,a3(α) =

{
−1 if g(α) = 0

1 if g(α) = 1
(5)

where
g(α) =

(
a0 + a1α+ a2α

2 + a3α
3 mod p

)
mod 2 (6)
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BioSequence2Vec Computation

▶ We show that the dot-product between the representations x̂ and ŷ
of a pair of sequences X and Y closely approximates the kernel
value.

▶ We are going to show that for any pair of sequences X and Y ,

x̂ · ŷ ≃ Φk(X ) · Φk(Y )

▶ Let x = Φk(X ) and y = Φk(Y ), we show that x̂ · ŷ ≃ x · y

Theorem
For any 0 < ϵ, δ < 1, if t ≥ 2ϵ2 log(1δ), then

1. E
[
x̂ · ŷ

]
= x · y

▶ Average (expected) value of the dot-product representations is equal to the
true kernel similarity

2. Pr
[
|x̂ · ŷ − x · y| ≤ ϵ∥x∥∥y∥

]
≥ 1− δ

▶ Probabilistic bound on how close the approximate dot-product is to the
true kernel similarity. It guarantees that with high probability (at least 1 -
δ, the error in approximation is within a specified tolerance ϵ.

14/ 74



BioSequence2Vec Computation

Algorithm BioSequence2Vec Computation

1: Input: Set S of sequences, integers k, p, Σ, t
2: Output: Embedding R
3: function ComputeEmbedding(S, k, p, Σ, t)
4: R = []
5: for X ∈ S do
6: x̂ = []
7: for i = 1 to t do
8: a0, a1, a2, a3 ← random(0, p − 1)
9: for j = 1 to |X | − k + 1 do
10: α← X [j : j + k]
11: h← a0 + a1αΣ + a2α2

Σ + a3α3
Σ

12: h← (h mod p) mod 2
13: if h = 0 then
14: x̂[i ]← x̂[i ]− 1
15: else
16: x̂[i ]← x̂[i ] + 1

17: x̂[i ]← 1√
t
× x̂[i ]

18: R.append(x̂)

19: Return R

15/ 74



Dataset Statistics

Dataset Detail Source
Total
Sequences

Total
classes

Sequence Length

Min Max Average

Spike7k
Aligned spike protein sequences to clas-
sify lineages of coronavirus in humans

[2] 7000 22 1274 1274 1274.00

Coronavirus
Host

Spike protein sequences to classify hosts
effected from coronavirus

[3] 5558 21 9 1584 1272.36

Human
DNA

Unaligned nucleotide sequences to clas-
sify gene family to which humans belong

[4] 4380 7 5 18921 1263.59

Table: Dataset Statistics.
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Embedding Properties

Method Category Detail Source Alignment
Free

Computationally
Efficient

Space
Effi-
cient

Low Dim.
Embedding

Spike2Vec
Feature
Engineering

Take biological sequence as input
and design fixed-length numerical
embeddings

[5] ✓ ✓ ✓
Spaced k-mers [6] ✓ ✓ ✓
PWM2Vec [7] ✓ ✓ ✓

WDGRL Neural
Network
(NN)

Take one-hot representation of
biological sequence as input and
design NN-based embedding
method by minimizing loss

[8] ✓ ✓

AutoEncoder [9] ✓ ✓

String Kernel
Kernel
Matrix

Designs n × n kernel matrix that
can be used with kernel classifiers
or with kernel PCA to get feature
vector based on principal compo-
nents

[10] ✓ ✓ ✓

SeqVec
Pretrained
Language
Model

Takes biological sequences as in-
put and fine-tunes the weights
based on a pre-trained model to
get final embedding

[11] ✓ ✓ ✓

ProteinBERT
Pretrained
Transformer

A pretrained protein sequence
model to classify the given bi-
ological sequence using Trans-
former/Bert

[12] ✓ ✓ ✓

BioSequence2Vec
(ours)

Hashing

Takes biological sequence as input
and design embeddings based on
the kernel property of preserving
pairwise distance

- ✓ ✓ ✓ ✓

Table: Different methods (ours and SOTA) description.
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Results

Spike7k Human DNA

Embeddings Algo. Acc. ↑ Prec. ↑ Recall ↑ F1
(Weig.)
↑

F1
(Macro) ↑

ROC
AUC ↑

Train Time
(sec.) ↓ Acc. ↑ Prec. ↑ Recall ↑ F1

(Weig.)
↑

F1
(Macro) ↑

ROC
AUC ↑

Train Time
(sec.) ↓

BioSequence2Vec
(ours)

SVM 0.848 0.858 0.848 0.841 0.681 0.848 9.801 0.555 0.554 0.555 0.543 0.497 0.700 13.251
NB 0.732 0.776 0.732 0.741 0.555 0.771 1.440 0.263 0.518 0.263 0.244 0.239 0.572 0.095
MLP 0.835 0.825 0.835 0.825 0.622 0.819 13.893 0.583 0.598 0.583 0.571 0.541 0.717 70.463
KNN 0.821 0.818 0.821 0.811 0.616 0.803 1.472 0.613 0.625 0.613 0.615 0.565 0.748 0.313
RF 0.863 0.867 0.863 0.854 0.703 0.851 2.627 0.786 0.816 0.786 0.787 0.779 0.846 1.544
LR 0.500 0.264 0.500 0.333 0.031 0.500 11.907 0.527 0.522 0.527 0.501 0.457 0.674 29.029
DT 0.845 0.856 0.845 0.841 0.683 0.839 0.956 0.663 0.666 0.663 0.664 0.639 0.795 4.064

Table: Classification results (averaged over 5 runs) on Spike7k and Human
DNA datasets for different evaluation metrics. Best values are shown in bold.

Embeddings Algo. Acc. Prec. Recall F1 (Weig.) F1 (Macro) ROC AUC Train Time
(Sec.)

BioSequence2Vec
(ours)

SVM 0.848 0.860 0.848 0.842 0.736 0.864 10.559
NB 0.475 0.693 0.475 0.433 0.451 0.719 0.288
MLP 0.819 0.818 0.819 0.807 0.681 0.836 101.027
KNN 0.817 0.810 0.817 0.810 0.617 0.832 0.938
RF 0.844 0.850 0.844 0.836 0.704 0.831 13.519
LR 0.856 0.853 0.856 0.847 0.781 0.888 62.573
DT 0.805 0.811 0.805 0.802 0.604 0.809 3.467

Table: Classification results (averaged over 5 runs) for different evaluation
metrics for Coronavirus Host Dataset. The best values are shown in bold.
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Nanobody-Antigen Binding
Prediction



Antigen

▶ Toxin, bacteria, or virus

▶ Induces an immune response

1. Produces antibodies/nanobodies

▶ Protein sequence - amino acid residues

Source: Microbe Notes
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Antibody

▶ Large and Y-shaped protein

▶ Identifies and neutralizes antigens

Source: addgene Blog
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Nanobody (Nb)

▶ single-domain and heavy-chain antibodies (sdAb)

▶ natural occurrence
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Nanobody-Antigen Binding

Nanobody bind selectively to a specific antigen

Source: Bioss Antibodies
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Nanobody - Applications

▶ Biotechnology and Medicine
▶ Therapeutics - treatment of SARS-CoV-2
▶ Diagnostics

Source: Microbe Notes
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Nanobody Design (in vivo)

▶ Antigen injected in animals

▶ Blood sample collected after a few months

▶ Nanobody extracted, cloned, and developed

Limitations:

▶ Costly [13]

▶ Time-consuming [14]

▶ Animal sacrifice [15]

▶ Batch-to-batch variation
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Nanobody Design (in silico) - Motivation

▶ Vast protein databases (PDB, etc.) [16, 17]

▶ Known examples of antigen-nanobody pairs

▶ Advanced machine learning and deep learning techniques

1. Transformers, neural networks
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Nanobody Design (in silico) - Pipeline

1. Antigen-nanobody 3D structure prediction

2. Binding site prediction

3. Molecular docking

4. Binding affinity prediction
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Nanobody Design (in silico) - Challenges

▶ Complexity in predicting nanobody 3D structure

▶ Inaccurate binding site recognition

▶ Computational costs

▶ Protein (antigen, nanobody) sequence data >> structural data
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Problem Formulation

Before predicting nanobody-antigen interaction

1. 3D structures available

2. Known binding sites

3. Generated antigen-nanobody complex

▶ These steps are:

▶ Time-consuming

▶ Computationally expensive

Given sequences of antigen-nanobody, predict whether they bind or not
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Experimental Setup

A supervised learning problem:

▶ Known examples of antigen-nanobody sequences - Dataset

▶ Examples labeled as binding or non-binding - Ground truth

▶ Learn a formula of features - Classification problem
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Dataset

Sequence length statistics for antigen and nanobody sequences

▶ Collected from UniProt 1 and Single Domain Antibody Database (sdAb) 2

Sequence Length Statistics

Type Count Mean Min Max Std.
Dev.

Median

Antigens 47 671.51 158 1816 421.24 480
Nanobodies 365 122.84 104 175 8.87 123

Statistics for nanobody sequences binding to each antigen

Type Mean Min Max Std.
Dev.

Median

Nanobodies in each antigen 7.77 1 36 9.28 4

1https://www.uniprot.org/
2http://www.sdab-db.ca/
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Feature Extraction

▶ Extracted features of each nanobody and antigen sequence

1. Charge at pH, Grand Average of Hydropathy (GRAVY) [18],
molecular weight, aromaticity

2. Instability index [19], isoelectric point, secondary structure fraction
(helix, turn, and sheet) [20]

3. Molar extinction coefficient (reduced and oxidized)

▶ Obtained Non-Binding Nb-Ag Pairs

1. Pairwise edit distance between antigens and nanobodies - proximity
matrix

2. 1388 additional Nb-Ag binding pairs

3. 1728 Ng-Ab non-binding pairs in total
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Data Visualization - t-SNE

(a) Nanobody (b) Antigen

The colored data points show the different antigen categories (47 in total)
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Sampling Strategy and Evaluation Metrics

▶ Randomly split:

▶ Full data into 70:30 training and testing set

▶ Training set into 90:10 training and validation set

▶ Experiments repeated 10-folds, and average results reported

▶ Standard classification metrics:

▶ Accuracy, Precision, Recall

▶ F1-score (weighted and macro) and Area Under Curve (AUC)
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Methods Employed

▶ Embedding Generation - gapped k-mers
1. Advantages:

1.1 Increased sensitivity
1.2 Enhanced flexibility
1.3 Comprehensive motif representation
1.4 Improved specificity

▶ Comparison with baseline models

1. Spike2Vec [5], Minimizers [21], and PWM2Vec [7]

▶ Machine Learning Classifiers

1. Support Vector Machine (SVM), Naive Bayes (NB), Multi-Layer
Perceptron (MLP), K-Nearest Neighbors (KNN), Random Forest
(RF), Logistic Regression (LR), and Decision Tree (DT)
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Results - Without Sequence Features

Embeddings Algo. Acc. ↑ Prec. ↑ Recall ↑ F1 (Weig.) ↑F1 (Macro) ↑ROC
AUC ↑

Train
Time
(sec.) ↓

Spike2Vec

SVM 0.818 0.824 0.818 0.818 0.818 0.819 5.662
NB 0.813 0.815 0.813 0.813 0.813 0.813 0.103
MLP 0.844 0.846 0.844 0.844 0.844 0.844 4.075
KNN 0.892 0.893 0.892 0.892 0.892 0.892 1.290
RF 0.906 0.911 0.906 0.906 0.906 0.906 3.725
LR 0.813 0.815 0.813 0.813 0.813 0.814 2.417
DT 0.878 0.878 0.878 0.878 0.877 0.878 1.293

Minimizers

SVM 0.824 0.826 0.824 0.823 0.823 0.823 5.444
NB 0.791 0.792 0.791 0.790 0.790 0.790 0.091
MLP 0.844 0.845 0.844 0.844 0.844 0.844 2.997
KNN 0.880 0.880 0.880 0.880 0.880 0.880 1.257
RF 0.892 0.898 0.892 0.892 0.892 0.893 4.000
LR 0.811 0.812 0.811 0.811 0.811 0.811 1.343
DT 0.851 0.851 0.851 0.850 0.850 0.850 1.677

PWM2Vec

SVM 0.810 0.812 0.810 0.809 0.809 0.809 5.732
NB 0.792 0.793 0.792 0.792 0.792 0.792 0.095
MLP 0.820 0.821 0.820 0.820 0.819 0.820 3.730
KNN 0.875 0.875 0.875 0.875 0.875 0.875 1.232
RF 0.892 0.899 0.892 0.891 0.891 0.892 3.746
LR 0.804 0.805 0.804 0.804 0.804 0.804 7.137
DT 0.866 0.866 0.866 0.866 0.866 0.866 1.692

Gapped
k-mers

SVM 0.814 0.816 0.814 0.813 0.813 0.812 5.740
NB 0.798 0.798 0.798 0.797 0.797 0.796 0.087
MLP 0.824 0.825 0.824 0.824 0.824 0.824 2.886
KNN 0.885 0.886 0.885 0.885 0.885 0.885 0.995
RF 0.907 0.912 0.907 0.894 0.894 0.908 3.755
LR 0.812 0.813 0.812 0.812 0.812 0.812 4.395
DT 0.872 0.872 0.872 0.872 0.871 0.872 1.777
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Results - With Sequence Features

Embeddings Algo. Acc. ↑ Prec. ↑ Recall ↑ F1 (Weig.) ↑F1 (Macro) ↑ROC
AUC ↑

Train
Time
(sec.) ↓

Spike2Vec

SVM 0.791 0.796 0.791 0.790 0.790 0.790 8.804
NB 0.695 0.737 0.695 0.680 0.678 0.691 0.085
MLP 0.811 0.814 0.811 0.811 0.811 0.811 2.326
KNN 0.844 0.845 0.844 0.844 0.844 0.844 0.953
RF 0.897 0.903 0.897 0.896 0.896 0.898 3.890
LR 0.827 0.827 0.827 0.827 0.826 0.827 1.183
DT 0.847 0.848 0.847 0.847 0.847 0.847 1.246

Minimizers

SVM 0.778 0.783 0.778 0.777 0.777 0.777 10.938
NB 0.674 0.736 0.674 0.649 0.647 0.670 0.094
MLP 0.801 0.806 0.801 0.800 0.800 0.800 3.228
KNN 0.842 0.842 0.842 0.842 0.842 0.842 0.827
RF 0.896 0.902 0.896 0.896 0.896 0.897 3.801
LR 0.823 0.823 0.823 0.823 0.823 0.823 1.167
DT 0.846 0.846 0.846 0.845 0.845 0.845 1.297

PWM2Vec

SVM 0.766 0.770 0.766 0.765 0.765 0.766 9.569
NB 0.679 0.726 0.679 0.659 0.657 0.674 0.087
MLP 0.811 0.813 0.811 0.811 0.811 0.811 2.889
KNN 0.828 0.828 0.828 0.827 0.827 0.827 0.768
RF 0.893 0.901 0.893 0.892 0.892 0.894 3.765
LR 0.819 0.819 0.819 0.819 0.819 0.819 1.495
DT 0.851 0.851 0.851 0.851 0.851 0.850 1.279

Gapped
k-mers

SVM 0.785 0.792 0.785 0.784 0.783 0.784 9.270
NB 0.720 0.745 0.720 0.712 0.711 0.718 0.086
MLP 0.807 0.810 0.807 0.806 0.806 0.806 2.432
KNN 0.839 0.839 0.839 0.839 0.838 0.838 0.753
RF 0.895 0.901 0.895 0.894 0.894 0.895 3.468
LR 0.823 0.823 0.823 0.823 0.823 0.823 1.123
DT 0.860 0.861 0.860 0.860 0.860 0.860 0.955
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Discussion

▶ Gapped k-mers spectrum outperforms all other embeddings

1. Average accuracy, precision, recall, and ROC-AUC - Random forest
classifier

▶ Spike2Vec performs better than other embeddings

1. Weighted and Macro F1 - Random forest classifier

▶ Comparison of embeddings with and without sequence features

1. Multicollinearity and curse of dimensionality

▶ Student t-test to evaluate the significance of the results

1. p-values predominantly less than 0.05
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t-Cell Sequence Classification



T Cell Receptor (TCR) Sequences

▶ Located on the surface of T cells

▶ Responsible for antigen recognition

▶ Is a core component in the adaptive immune system

1. Activated in response to specific pathogens or antigens

▶ Analyzing TCR sequences

1. Help us to classify cancer types
2. Very important in early stage detection or immunotherapy

Figure: Source:
https://proteinswebteam.github.io/interpro-blog/potm/2005_3/Page1.htm
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Pseudo-Amino Acid Composition

▶ Pseudo-amino acid composition (PseAAC) represents protein
sequences considering the frequency and physicochemical properties
of amino acids [22].

▶ It provides a comprehensive representation compared to traditional
amino acid composition [23].

▶ In PseAAC, each amino acid is represented by numerical values
describing characteristics like hydrophobicity, polarity, charge,
molecular weight, and solvent accessibility [24].
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Pseudo-Amino Acid Composition
Hydrophobicity:

▶ Hydrophobicity in TCR sequences refers to the tendency of certain
amino acids to be hydrophobic [25].

▶ Represented using a scale that assigns numerical values to amino
acids based on hydrophobic nature.

▶ Uses a window size of 3 for calculation and Kyte-Doolittle scale [18].

▶ Hydrophobicity score H(S) is calculated as:

H(S) =
L∑

i=1

H(S [i ]) (7)

Polarity:

▶ Polarity in TCR sequences refers to the distribution of polar and
nonpolar amino acids in variable regions [25].

Charge:

▶ Charge refers to the distribution of charged amino acids in TCR
sequences, especially in variable regions [26].
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Pseudo-Amino Acid Composition

Molecular Weight:

▶ Sum of atomic weights of all amino acids in TCR proteins [27].

▶ Calculated as:

Molecular weight =
N∑
i=1

Mi (8)

Solvent Accessibility:

▶ Degree to which amino acids in TCR are exposed to solvent [28].

▶ These properties provide insights into TCR structure, function,
antigen recognition, and are useful for targeted immunotherapies
and personalized cancer treatments [29, 30, 31, 32, 33].
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Algorithm

Algorithm PseAAC2Vec Protein Encoding

Input: TCR Sequences S , Output: PseAAC2Vec Embedding
1: PP← Dictionary of physicochemical properties
2: window size← 3 ▷ Hyperparameter, tunned using validation set
3: Final Vectors← []
4: for seqs in range(len(S)) do
5: protein sequence← S[seqs]
6: SeqLen← length(protein sequence)
7: PL← length(physicochemical properties)
8: VecLen← PL× window size
9: PseAAC2Vec feature vector← zeros(SeqLen,PL)
10: PP ← physicochemical properties.values()
11: for i in range(SeqLen) do
12: for k,PEncode in enumerate(PP) do
13: AA← protein sequence[i]
14: PseAAC2Vec feature vector[i, k]← PEncode[AA]

15: ExVec← zeros(SeqLen,VecLen + PL)
16: for i in range(SeqLen) do
17: for j in range(window size) do
18: if i - j ≥ 0 then
19: AA← protein sequence[i - j]
20: for k, PN in enumerate(PP.keys()) do
21: PEncode = PP[PN]
22: ExVec[i, j ∗ PL + k] = PEncode[AA]

23: ExVec[i,VecLen :]← PseAAC2Vec feature vector[i ]

24: flattened feature vector← Flatten(ExVec)
25: Final Vectors.append(flattened feature vector)

26: return PseAAC2VecEmbedding 42/ 74



Dataset

Sequence Length Statistics

Cancer Type Total Sequences Unique Sequences Min. Max. Average

Melanoma 8750 7123 9 24 15
Retroperitoneal 5505 4763 9 20 15

Pancreatic 2887 2883 11 25 15
Ovarian 583 512 10 20 15

Total 17725 15281 - - -

Table: Dataset Statistics of TCR Sequences. The table shows the total number
and the unique number of sequences for each cancer type, the minimum, the
average, and the maximum length of TCR sequences in the dataset used for
the experiments in this study.
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Results
Embeddings Algo. Acc. ↑ Prec. ↑ Recall ↑ F1 (Weig.)

↑
F1
(Macro) ↑

ROC
AUC ↑

Train Time
(sec.) ↓

PWM2Vec

NB 0.3234 0.4239 0.3234 0.2856 0.2392 0.5242 4.2852
MLP 0.5199 0.5078 0.5199 0.5128 0.3899 0.5995 77.1383
KNN 0.5144 0.4674 0.5144 0.4773 0.3105 0.5555 4.6783
RF 0.5819 0.5805 0.5819 0.5101 0.3776 0.5905 113.3189
LR 0.4943 0.4885 0.4943 0.4882 0.3662 0.5856 505.1448
DT 0.5018 0.5006 0.5018 0.5011 0.3847 0.5967 95.9090

Spike2Vec

NB 0.4645 0.4863 0.4645 0.4569 0.3359 0.5755 0.0380
MLP 0.5382 0.4814 0.5382 0.4910 0.3105 0.5622 24.6133
KNN 0.5235 0.4840 0.5235 0.4942 0.3304 0.5647 3.1544
RF 0.6041 0.5650 0.6041 0.5503 0.4120 0.6124 20.9789
LR 0.5457 0.5000 0.5457 0.4817 0.2931 0.5583 0.6857
DT 0.5182 0.5165 0.5182 0.5172 0.3957 0.6051 3.2491

String
Kernel

NB 0.4464 0.4664 0.4464 0.4477 0.3324 0.5706 0.3123
MLP 0.5125 0.4939 0.5125 0.5020 0.3642 0.5834 72.9982
KNN 0.4968 0.4535 0.4968 0.4655 0.3144 0.5533 2.2828
RF 0.6030 0.5603 0.6030 0.5365 0.4082 0.6111 40.7817
LR 0.5308 0.4724 0.5308 0.4805 0.3068 0.5604 5.6004
DT 0.4964 0.4942 0.4964 0.4952 0.3787 0.5934 14.2018

WDGRL

NB 0.4850 0.3820 0.4850 0.4254 0.2522 0.5275 0.0074
MLP 0.5087 0.4247 0.5087 0.4179 0.2416 0.5248 15.9686
KNN 0.4731 0.4256 0.4731 0.4349 0.2844 0.5316 0.8438
RF 0.5559 0.5202 0.5559 0.4934 0.3679 0.5798 4.7567
LR 0.5048 0.4033 0.5048 0.3942 0.2216 0.5169 0.0788
DT 0.4800 0.4766 0.4800 0.4781 0.3625 0.5800 0.2037

Auto-
Encoder

NB 0.4230 0.4219 0.4230 0.4031 0.2767 0.5323 0.0510
MLP 0.5259 0.4745 0.5259 0.4888 0.3164 0.5613 207.0182
KNN 0.5244 0.4785 0.5244 0.4867 0.3215 0.5593 6.2745
RF 0.5836 0.5864 0.5836 0.5102 0.3748 0.5880 35.0135
LR 0.5389 0.4907 0.5389 0.4751 0.2893 0.5542 2.6055
DT 0.4866 0.4795 0.4866 0.4826 0.3677 0.5832 7.7863

SeqVec

NB 0.3466 0.4820 0.3466 0.3049 0.2568 0.5438 5.3837
MLP 0.4996 0.5042 0.4996 0.5016 0.3793 0.5937 109.9893
KNN 0.5120 0.4626 0.5120 0.4739 0.3121 0.5551 5.4640
RF 0.5675 0.5905 0.5675 0.4822 0.3438 0.5727 166.7319
LR 0.5476 0.5269 0.5476 0.5333 0.4059 0.6054 862.3937
DT 0.4673 0.4691 0.4673 0.4681 0.3481 0.5730 158.9599

Protein Bert - 0.5344 0.5077 0.5344 0.4724 0.2865 0.5538 301.7492

PseAAC2Vec
(ours)

NB 0.3071 0.4824 0.3071 0.1827 0.1632 0.5128 0.3952
MLP 0.5417 0.4876 0.5417 0.4908 0.3082 0.5646 17.8969
KNN 0.4985 0.4561 0.4985 0.4625 0.3099 0.5457 1.0735
RF 0.6190 0.5967 0.6190 0.5757 0.4525 0.6300 5.6696
LR 0.5401 0.4976 0.5401 0.4729 0.2847 0.5505 130.54
DT 0.5327 0.5343 0.5327 0.5323 0.4205 0.6219 1.6375
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Results

Embedding Time (sec.)

OHE 39.4524
PWM2Vec 62.1373
String Kernel 1014.61
Auto Encoder 161.623
Bert 257.496
SeqVec 10875.57
Spike2Vec 241.368
WDGRL 20.1513
PseAAC2Vec (ours) 3.7313

Table: Embedding generation time. The best value is shown in bold.
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Image Transformation



Sequence-to-Image Transformation

▶ We propose Chaos Game Representation-based method, which is an
efficient way to convert sequences into images.

▶ Our proposed embedding method is alignment-free and could
improve the “area of interest” within the image by performing
biologically meaningful manipulation of a sequence first and then
mapping the manipulated sequence into an image
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Chaos Game Representation (CGR)

(a) CGR-based allocation.
(b) 3-mers for a protein
sequence

(c) 20-flakes for protein
sequence.

(a) illustrates the CGR-based space allocation for a given k-mer in the
respective image.(b) shows an example of 3-mers from a given sequence.
(c) shows an example of 20-flakes for protein sequences.
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Chaos Game Representation (CGR)

▶ CGR is used to convert sequences into images. Works well for
nucleotide sequences.

▶ FCGR follows CGR to get images of protein sequences.
▶ Get the x and y axis for an amino acid i using the given equations:

x [i ] = r · sin(2πi
n

+ θ) (9)

Here, r is a scaling factor that determines the size of the image, i is
the position of the amino acid in the sequence, n is the total number
of amino acids in the sequence, and θ is an angle parameter that
affects the orientation of the image.

y [i ] = r · cos(2πi
n

+ θ) (10)

▶ These equations create a positional mapping of amino acids in a
protein sequence onto a 2D plane, allowing the visualization of
protein sequences as images. The values of r and θ can be adjusted
to modify the appearance and characteristics of the resulting images.
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Spike2CGR

Figure: Workflow of Spike2CGR for a given sequence. For a given spike
sequence, steps from (a) to (d) are followed to generate the corresponding
Spike2CGR sequence.
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Spike2CGR (Image Transformation)

(a) Chaos (b) Spike2Vec (c) PWM2Vec (d) Minimizer (e) Spike2CGR

Figure: Graphical representation of a spike sequence of B.1.351 variant (from
SARS-CoV-2 dataset) using different methods. Some of the major changes in
the images (area of interest) are highlighted using the red boxes.
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Classification Models

▶ Two types of classification models are used:
▶ Tabular Models: 3-layer Tab CNN & 4-layer Tab CNN
▶ Vision Models: CNN, RESNET (pre-trained), VGG-19 (pre-trained).

Figure: The architectures of the 4-layer CNN model. Here ker represents kernel
and str represents stride filter size.
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Dataset

Lineage Region Labels No. Mut. S/Gen.
No. of sequences

Training Validation Testing

B.1.1.7 UK Alpha 8/17 9930 2527 3146
B.1.617.2 India Delta 8/17 1877 450 456
P.2 Brazil Zeta 3/7 1780 432 533
B.1.429 California Epsilon 3/5 1079 256 326
P.1 Brazil Gamma 10/21 994 245 306
B.1.526 New York Iota 6/16 847 219 255
B.1.351 South Africa Beta 9/21 837 221 258
B.1.427 California Epsilon 3/5 835 218 268
B.1.1.529 South Africa Omicron 34/53 747 178 253
C.37 Peru Lambda 8/21 732 169 228
B.1.621 Colombia Mu 9/21 717 168 219
B.1.525 UK and Nigeria Eta 8/16 714 187 224
P.3 Philippines Theta 8/17 111 30 34

Total 21200 5300 6238

Table: Dataset statistics for different coronavirus variants (32738 in total).
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Results

DL Model Method Acc. ↑ Prec. ↑ Recall ↑ F1
(Weig.)
↑

F1
(Macro)
↑

ROC
AUC ↑

Train
Time
(hrs.) ↓

3-Layer
Tab CNN

OHE 0.472 0.301 0.472 0.368 0.060 0.552 0.594
WDGRL 0.636 0.457 0.636 0.523 0.263 0.594 0.380

4-Layer
Tab CNN

OHE 0.637 0.469 0.637 0.528 0.157 0.511 0.977
WDGRL 0.688 0.517 0.688 0.582 0.227 0.637 0.866

1-Layer
CNN

Chaos 0.700 0.680 0.696 0.651 0.563 0.673 8.195
Spike2Vec 0.733 0.690 0.733 0.679 0.679 0.850 7.779
PWM2Vec 0.734 0.676 0.734 0.691 0.697 0.844 5.744
Minimizer 0.743 0.707 0.743 0.709 0.709 0.832 6.171
Spike2CGR 0.719 0.730 0.766 0.739 0.717 0.840 4.992

% improv. of Spike2CGR
from SOTA Chaos

1.9 5 7 8.8 15.8 16.7 39.08
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Results

DL Model Method Acc. ↑ Prec. ↑ Recall ↑ F1
(Weig.)
↑

F1
(Macro)
↑

ROC
AUC ↑

Train
Time
(hrs.) ↓

2-Layer
CNN

Chaos 0.700 0.669 0.697 0.652 0.564 0.645 6.394
Spike2Vec 0.740 0.730 0.744 0.729 0.736 0.725 7.329
PWM2Vec 0.740 0.700 0.739 0.688 0.694 0.676 6.615
Minimizer 0.710 0.710 0.710 0.681 0.581 0.771 6.426
Spike2CGR 0.633 0.577 0.633 0.559 0.376 0.663 6.193

% improv. of Spike2CGR
from SOTA Chaos

-6.7 -9.2 -6.4 -9.3 -18 .8 1.8 3.14
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Results

DL Model Method Acc. ↑ Prec. ↑ Recall ↑ F1
(Weig.)
↑

F1
(Macro)
↑

ROC
AUC ↑

Train
Time
(hrs.) ↓

3-Layer
CNN

Chaos 0.740 0.722 0.739 0.717 0.696 0.809 5.658
Spike2Vec 0.750 0.723 0.750 0.715 0.725 0.838 6.919
PWM2Vec 0.751 0.715 0.751 0.716 0.732 0.846 7.458
Minimizer 0.750 0.729 0.750 0.721 0.719 0.851 6.332
Spike2CGR 0.770 0.724 0.767 0.734 0.712 0.845 4.758

% improv. of Spike2CGR
from SOTA Chaos

3 0.2 2.8 1.7 1.6 3.6 31.23
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Results

DL Model Method Acc. ↑ Prec. ↑ Recall ↑ F1
(Weig.)
↑

F1
(Macro)
↑

ROC
AUC ↑

Train
Time
(hrs.) ↓

4-Layer
CNN

Chaos 0.740 0.686 0.737 0.706 0.678 0.728 7.986
Spike2Vec 0.750 0.686 0.749 0.712 0.720 0.842 7.447
PWM2Vec 0.750 0.733 0.745 0.736 0.747 0.847 7.720
Minimizer 0.750 0.726 0.750 0.706 0.709 0.846 7.068
Spike2CGR 0.7708 0.731 0.768 0.738 0.714 0.843 10.658

% improv. of Spike2CGR
from SOTA Chaos

3 4.5 3.1 3.2 3.6 11.5 -33.45
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Results

DL Model Method Acc. ↑ Prec. ↑ Recall ↑ F1
(Weig.)
↑

F1
(Macro)
↑

ROC
AUC ↑

Train
Time
(hrs.) ↓

RESNET50
Pre-
Trained
Model

Chaos 0.680 0.644 0.676 0.641 0.547 0.743 10.654
Spike2Vec 0.711 0.657 0.710 0.666 0.644 0.759 10.746
PWM2Vec 0.680 0.589 0.675 0.606 0.507 0.757 10.264
Minimizer 0.723 0.665 0.723 0.673 0.647 0.802 11.732
Spike2CGR 0.740 0.661 0.736 0.683 0.626 0.780 14.299

% improv. of Spike2CGR
from SOTA Chaos

6 -1.7 6 4.2 7.9 3.7 -34.21
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Results

DL Model Method Acc. ↑ Prec. ↑ Recall ↑ F1
(Weig.)
↑

F1
(Macro)
↑

ROC
AUC ↑

Train
Time
(hrs.) ↓

VGG-19
Pre-
Trained
Model

Chaos 0.480 0.233 0.483 0.315 0.050 0.500 27.398
Spike2Vec 0.470 0.221 0.470 0.301 0.049 0.500 26.599
PWM2Vec 0.464 0.215 0.464 0.294 0.048 0.500 23.781
Minimizer 0.480 0.227 0.477 0.308 0.496 0.500 24.459
Spike2CGR 0.495 0.245 0.495 0.327 0.050 0.500 24.355

% improv. of Spike2CGR
from SOTA Chaos

1.5 1.2 1.2 1.2 0 0 8.4
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Results

(a) Chaos (b) Spike2CGR
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Molecular Properties (Weights)

▶ Kyte and Doolittle (KD) Hydropathy Scale
1. Assigns numerical values to amino acids based on their

hydrophobicity/hydrophilicity, used in predicting protein structure and
function.

▶ Eisenberg Hydrophobicity Scale
1. Quantifies the hydrophobicity of amino acids, aiding in protein structure

prediction and understanding protein interactions with hydrophobic
environments.

▶ Hydrophilicity Scale
1. Measures the propensity of amino acids to interact with water, crucial for

understanding protein solubility, folding, and function in aqueous
environments.

▶ Flexibility Of The Characters
1. Evaluates the flexibility or rigidity of amino acids, important for predicting

protein dynamics, conformational changes, and flexibility in molecular
interactions.

▶ Hydropathy Scale
1. Ranks amino acids based on their hydrophobic or hydrophilic nature,

assisting in studying protein folding, membrane protein structure, and
transmembrane domains.
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Workflow

Figure: Workflow of the proposed method for creating an image of a sequence.
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Dataset

Rabies Sequence Length Number of Sequences

Host Name Count Min. Max. Average Training Validation Testing

Canis Familiaris 9065 90 11928 1600.50 5802 1450 1813
Bos Taurus 2497 117 11928 995.29 1599 399 499
Vulpes Vulpes 2221 133 11930 2923.77 1422 355 444
Felis Catus 1125 90 11928 1634.43 720 180 225
Procyon Lotor 884 291 11926 6763.80 567 141 176
Desmodus Rotundus 875 164 11923 1051.50 560 140 175
Mephitis Mephitis 864 220 11929 1266.59 554 138 172
Homo Sapiens 838 101 11928 1537.85 537 134 167
Eptesicus Fuscus 718 264 11924 1144.35 460 115 143
Skunk 492 211 11928 6183.26 316 78 98
Tadarida Brasiliensis 270 264 11923 1175.67 173 43 54
Equus Caballus 202 163 11924 1376.74 130 32 40

Total 20051 - - - - - -

Table: Dataset Statistics for Rabies data.
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Baselines

▶ Feature-engineering-based methods
▶ One Hot Encoding (OHE): created embeddings are sparse and face

curse of dimensionality challenge.
▶ Wasserstein Distance Guided Representation Learning (WDGRL):

require large training data for optimal performance.
▶ Position Specific Scoring Matrix (PSSM)

▶ Image-based method
▶ Frequency Matrix-based Chaos Game Representation (FCGR): 1-to-1

mapping between the amino acids and pixels.

63/ 74



Results

Method Acc. ↑ Prec. ↑ Recall ↑ F1 (Weig.) ↑ F1 (Macro) ↑ ROC
AUC ↑

Train Time
(Sec.) ↓

NB
OHE 0.124 0.447 0.124 0.134 0.195 0.585 979.44
WDGRL 0.514 0.441 0.514 0.410 0.184 0.575 0.01
PSSM2Vec 0.125 0.296 0.125 0.072 0.105 0.58 0.04

3 Layer
Tab CNN

OHE 0.451 0.203 0.451 0.280 0.050 0.500 4191.34
WDGRL 0.450 0.202 0.450 0.279 0.049 0.500 1737.65
PSSM2Vec 0.452 0.204 0.452 0.281 0.051 0.500 2040.81

4 Layer
Tab CNN

OHE 0.452 0.204 0.452 0.281 0.051 0.500 5974.26
WDGRL 0.535 0.318 0.535 0.395 0.103 0.500 964.97
PSSM2Vec 0.450 0.204 0.450 0.282 0.052 0.500 3790.09

ViT

Chaos 0.448 0.201 0.448 0.277 0.051 0.500 2943.45
KD 0.440 0.194 0.440 0.269 0.050 0.500 3593.00
Eisen. 0.465 0.216 0.465 0.295 0.052 0.500 3474.12
Flex. 0.441 0.194 0.441 0.270 0.051 0.500 3035.72
Hydrophil. 0.455 0.207 0.455 0.285 0.052 0.500 2829.95
Hydropathy 0.449 0.201 0.449 0.278 0.051 0.500 3029.90

CNN

Chaos 0.780 0.763 0.780 0.767 0.662 0.813 12505.91
KD 0.771 0.757 0.771 0.756 0.647 0.807 13331.11
Eisen. 0.787 0.779 0.787 0.773 0.668 0.810 14127.47
Flex. 0.775 0.763 0.775 0.758 0.647 0.807 13068.88
Hydrophil. 0.785 0.770 0.785 0.774 0.659 0.817 14286.38
Hydropathy 0.773 0.766 0.773 0.765 0.653 0.809 13115.00

Pretrain

Chaos 0.202 0.365 0.202 0.230 0.081 0.500 146831.05
KD 0.210 0.370 0.210 0.229 0.079 0.510 147221.45
Eisen. 0.284 0.451 0.284 0.364 0.095 0.530 161828.01
Flex. 0.274 0.441 0.274 0.387 0.087 0.500 144477.50
Hydrophil. 0.283 0.431 0.283 0.363 0.093 0.521 150921.41
Hydropathy 0.252 0.331 0.252 0.323 0.073 0.500 142441.85

Table: The top 2 best values for each evaluation metric are shown in bold.
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Results

(a) Chaos (b) Eisenberg (c) S.M. Chaos (d) S.M. Eisenberg

Figure: Images generated using Chaos and Eisenberg encoding techniques for a
sequence against Cytoplasm location from protein subcellular dataset along
with their respective Saliency Maps (S.M.). Some of the major differences
between the original images are indicated using the red boxes. The blue color
in the saliency maps indicates the most importance. This figure is best seen in
colors.
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Results

(a) Chaos (b) Eisenberg

Figure
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Bézier curves

The general formula [34] of the Bézier curve is

BZ (t) = Σn
i=0

(
n
i

)
t i (1− t)n−iPi (11)

where 0 ≤ t ≤ 1, Pi are known as control points and are elements of Rk ,
and k ≤ n.
To construct the protein images, we employ a Bézier curve with n = 3
and k = 2. As images consist of x and y coordinates, therefore k = 2 is
used. The formulas to determine the coordinates for representing an
amino acid in the respective generated image are,

x = (1− t)3 ·P0x +3 · (1− t)2 · t ·P1x +3 · (1− t) · t2 ·P2x + t3 ·P3x (12)

y = (1− t)3 ·P0y +3 · (1− t)2 · t ·P1y +3 · (1− t) · t2 ·P2y + t3 ·P3y (13)
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Bézier curves

Input: Sequence seq, No. of Parameters m
Output: Image img

1: conPoint = {} ▷ dictionary for control points

2: for i, aa ∈ seq do: ▷ every unique amino acid aa in seq

3: conPoint[aa] = [i, ASCII (aa)] ▷ assign control point the index i and ASCII of aa

4: xCord = [] ▷ list for x coordinates

5: yCord = [] ▷ list for y coordinates

6: t Val = Get m pairs ∈ [0, 1] ▷ list of m pairs of parameters

7: ite = 3 ▷ no. of deviations pair points. It can have any value.

8: for a ∈ seq : do ▷ every amino acid a in seq

9: org point = conPoint[a] ▷ control point of a

10: points = [org point]

11: for i ∈ (ite) : do

12: dev = Get Random Pair ▷ get a random pair

13: mod point = org point + dev ▷ get a modified control point

14: points.append(mod point)

15: curve point = Get Bezier Point(points, t Val) ▷ get bezier curve points from bezier func

16: xCord = curve point[:0] ▷ get x coords of curve

17: yCord = curve point[:1] ▷ get y coords of curve

18: img = plot(xCord , yCord) ▷ get image by plotting x & y coords

19: return(img)
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Bézier curves

Figure: The workflow of our system to create an image from a given sequence
and a number of parameters m. We have used ”MAVM” as an input sequence
here. Note that the cur Pts consists of a set of values for x coordinates and y
coordinates.
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Bézier curves

(a) Active ACP (b) Inactive ACP

Figure: The Bézier curve method-based images created for two sequences from
the ACP dataset. One sequence belongs to the active class of the dataset,
while the other is from the inactive class.
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Dataset

Protein Subcellular Sequence Length

Subcellular Locations Count Min. Max. Average

Cytoplasm 1411 9 3227 337.32
Plasma Membrane 1238 47 3678 462.21
Extracellular Space 843 22 2820 194.01
Nucleus 837 16 1975 341.35
Mitochondrion 510 21 991 255.78
Chloroplast 449 71 1265 242.03
Endoplasmic Reticulum 198 79 988 314.64
Peroxisome 157 21 906 310.75
Golgi Apparatus 150 116 1060 300.70
Lysosomal 103 101 1744 317.81
Vacuole 63 60 607 297.95

Total 5959 - - -
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Results

Category DL Model Method Acc. ↑ Prec. ↑ Recall ↑ F1
(Weig.) ↑

F1
(Macro)
↑

ROC
AUC ↑

Train Time
(hrs.) ↓

Vision Transformer

ViT

FCGR 0.226 0.051 0.226 0.083 0.033 0.500 0.180
RandmCGR 0.222 0.049 0.222 0.080 0.033 0.500 0.154
Spike2CGR 0.222 0.051 0.222 0.083 0.147 0.500 0.176
Bézier 0.462 0.254 0.462 0.327 0.147 0.572 0.160

% improv. of Bézier from
FCGR

23.6 20.3 23.6 24.4 11.4 7.2 11.11

% impro. of Bézier from
Spike2CGR

24 20.3 24 24.4 0 7.2 -9.09

Pretrained Vision Models

ResNet-
50

FCGR 0.368 0.268 0.368 0.310 0.155 0.556 3.831
RandmCGR 0.293 0.174 0.293 0.211 0.102 0.527 13.620
Spike2CGR 0.368 0.175 0.368 0.214 0.105 0.565 10.992
Bézier 0.964 0.967 0.964 0.961 0.907 0.948 11.415

% improv. of Bézier from
FCGR

59.6 69.9 59.6 65.1 75.2 39.2 -197.96

% impro. of Bézier from
Spike2CGR

59.6 79.2 59.6 74.7 80.2 38.3 -3.8
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Results

Category DL Model Method Acc. ↑ Prec. ↑ Recall ↑ F1
(Weig.) ↑

F1
(Macro)
↑

ROC
AUC ↑

Train Time
(hrs.) ↓

Pretrained Vision Models

VGG-19

FCGR 0.316 0.209 0.316 0.241 0.114 0.533 14.058
RandmCGR 0.288 0.192 0.288 0.218 0.105 0.525 26.136
Spike2CGR 0.351 0.352 0.351 0.333 0.211 0.550 19.980
Bézier 0.896 0.879 0.896 0.873 0.680 0.840 18.837

% improv. of Bézier from
FCGR

58 67 58 63.2 56.6 30.7 -33.99

% impro. of Bézier from
Spike2CGR

54.5 52.7 54.5 56.3 46.9 29 5.7

EfficientNet

FCGR 0.100 0.088 0.100 0.094 0.035 0.532 31.194
RandmCGR 0.284 0.107 0.284 0.152 0.078 0.500 30.223
Spike2CGR 0.320 0.230 0.320 0.230 0.200 0.500 25.497
Bézier 0.834 0.787 0.834 0.797 0.483 0.751 20.312

% improv. of Bézier from
FCGR

73.4 69.9 73.4 70.3 44.8 21.9 34.88
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Thank you for your attention !



Feel Free To Contact Me

▶ Website: https://sarwanpasha.github.io/

▶ Google Scholar: https:
//scholar.google.com/citations?user=9dtXSoAAAAAJ&hl=en
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