Representation Learning And Sequence Analysis Using A.I

Sarwan Ali

4th Year Ph.D. Candidate

Department of Computer Science, Georgia State University Atlanta, GA, USA

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Table of Contents

- 1. String Kernel
- 2. Kernel Embedding
- 3. Nanobody-Antigen Binding Prediction
- 4. t-Cell Sequence Classification
- 5. Chaos Game Representation

String Kernel

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Sequence Classification

Sequence analysis is fundamental in machine learning and data mining

Applications in bioinformatics, text mining, and NLP

- Protein homology detection
- Protein 3d Fold prediction
- Music genre classification
- Music artist identification
- Text categorization

Problem Formulation

Input:

- A set of sequences X
- ► Alphabet Σ
- ► k,m

Output:

Problem Formulation

Input:

- A set of sequences X
- ► Alphabet Σ
- ► k,m

Output:

Kernel Matrix K

Kernel Value

k-spectrum and *k*, *m*-mismatch kernel: Given a sequence X over alphabet Σ , the *k*, *m*-mismatch spectrum of X is a $|\Sigma|^k$ -dimensional vector, $\Phi_{k,m}(X)$ of number of times each possible *k*-mer occurs in X with at most *m* mismatches. Formally,

$$\Phi_{k,m}(X) = \left(\Phi_{k,m}(X)[\gamma]\right)_{\gamma \in \Sigma^k} = \left(\sum_{\alpha \in X} I_m(\alpha, \gamma)\right)_{\gamma \in \Sigma^k}, \quad (1)$$

where $I_m(\alpha, \gamma) = 1$, if α belongs to the set of k-mers that differ from γ by at most m mismatches, i.e. the Hamming distance between α and γ , $d(\alpha, \gamma) \leq m$. Note that for m = 0, it is known as k-spectrum of X.

Kernel Definition

Problem: Efficient computation of k, m-mismatch kernel for sequences X and Y. Kernel Definition:

$$K(X, Y|k, m) = \sum_{\alpha \in X} \sum_{\beta \in Y} |N_{k,m}(\alpha) \cap N_{k,m}(\beta)|$$
(2)

where $N_{k,m}(\alpha)$ and $N_{k,m}(\beta)$ are *m*-mismatch neighborhoods of α and β Key Facts:

ℑ_m(α, β) = |N_{k,m}(α) ∩ N_{k,m}(β)| depends on k, m, |Σ|, and d(α, β).
 ℑ_m(α, β) = 0 if d(α, β) > 2m.

Algorithm for Kernel Computation

Key Steps:

- Compute $M_i(X, Y)$: Number of k-mer pairs (α, β) with $d(\alpha, \beta) = i$.
- Compute \mathcal{I}_d using closed form:

$$n^{ij}(\alpha,\beta) = \sum_{t=0}^{rac{i+j-d}{2}} {2d-i-j+2t \choose d-(i-t)} {d \choose i+j-2t-d} imes$$

$$(s-2)^{i+j-2t-d}\binom{k-d}{t}(s-1)^t(3)$$

• Compute $F_i(X, Y)$ efficiently:

$$F_i(X,Y) = \sum_{\theta \in \mathcal{Q}_k(k-i)} f_\theta(X,Y)$$
(4)

• Approximate $F_i(X, Y)$ using random sampling.

Approximate Kernel Algorithm

Algorithm Approximate-Kernel($S_X, S_Y, k, m, \epsilon, \delta$) 1: Initialize \mathcal{I} . \hat{M} . \hat{F} to zero 2: Populate \mathcal{I} using closed form 3: for i = 0 to t do 4: $\mu_F \leftarrow 0$ 5: for $\theta \in B_i$ do $\mu_F \leftarrow \mu_F + \text{sort-enumerate}(S_X, S_Y, k, \theta)$ 6: 7: $\hat{F}[i] \leftarrow \mu_F \cdot \frac{1}{|B_i|} \binom{k}{k-i}$ 8: $\hat{M}[i] \leftarrow \hat{F}[i]$ 9: **for** j = 0 to i - 1 **do** $\hat{M}[i] \leftarrow \hat{M}[i] - \binom{k-j}{k-i} \cdot \hat{M}[i]$ 10: 11: $K' \leftarrow \text{sumproduct}(\hat{M}, \mathcal{I})$ 12: return K'

Theoretical Guarantee: Resulting kernel matrix is positive semidefinite.

String Kernel based Sequence Classification (recall)

For a sequence X over Σ , the k, m-mismatch spectrum is a $|\Sigma|^k$ -d vector

String Kernel based Sequence Classification

We designed a novel method that

- 1. Efficient Approximate Kernel Based Spike Sequence Classification, IEEE/ACM Transactions on Computational Biology and Bioinformatics (2022)
- efficiently estimates the pairwise kernel scores K(X, Y)
- has approximation guarantees on estimation quality
- and enabling the scalability of kernel methods for larger values of parameters

String Kernel To Embedding Transformation

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

- The BioSequence2Vec representation, x̂ for a sequence X represents X by the random projections of Φ_k(X) on the "discrete approximations" of random directions.
- It allows the application of vector space-based machine learning methods.
- We show that the Euclidean distance between a pair of vectors in BioSequence2Vec representation is closely related to the kernel-based proximity measure between the corresponding sequences.
- We use 4-wise independent hash functions to compute $\Phi'(\cdot)$.

Definition (4-wise Independent hash function)

A family \mathcal{H} of functions of the form $h : \Sigma^k \mapsto \{-1, 1\}$ is called 4-wise independent, or 4-universal, if a randomly chosen $h \in \mathcal{H}$ has the following properties:

- 1. for any $\alpha \in \Sigma^k$, $h(\alpha)$ is equally likely to be -1 or 1.
- 2. for any distinct $\alpha_i \in \Sigma^k$, and $m_i \in \{-1,1\}$ $(1 \le i \le 4)$,

$$Pr[h(\alpha_1) = m_1 \wedge \ldots \wedge h(\alpha_4) = m_4] = 12^4$$

Next, we give a construction of a 4-wise independent family of hash functions due to Carter and Wegman [1]

Definition

Let p be a large prime number. For integers a_0, a_1, a_2, a_3 , such that $0 \le a_i \le p-1$, and $\alpha \in \Sigma^k$ (represented as integer base $|\Sigma|$), the hash function $h_{a_0,a_1,a_2,a_3} : \Sigma^k \mapsto \{-1,1\}$ is defined as

$$h_{a_0,a_1,a_2,a_3}(\alpha) = \begin{cases} -1 & \text{if } g(\alpha) = 0\\ 1 & \text{if } g(\alpha) = 1 \end{cases}$$

$$\tag{5}$$

where

$$g(\alpha) = (a_0 + a_1\alpha + a_2\alpha^2 + a_3\alpha^3 \mod p) \mod 2 \tag{6}$$

We show that the dot-product between the representations x̂ and ŷ of a pair of sequences X and Y closely approximates the kernel value.

▶ We are going to show that for any pair of sequences X and Y,

$$\mathbf{\hat{x}} \cdot \mathbf{\hat{y}} \simeq \Phi_k(X) \cdot \Phi_k(Y)$$

• Let $\mathbf{x} = \Phi_k(X)$ and $\mathbf{y} = \Phi_k(Y)$, we show that $\mathbf{\hat{x}} \cdot \mathbf{\hat{y}} \simeq \mathbf{x} \cdot \mathbf{y}$

Theorem

For any $0 < \epsilon, \delta < 1$, if $t \ge 2\epsilon^2 \log(1\delta)$, then

- 1. $E[\mathbf{\hat{x}} \cdot \mathbf{\hat{y}}] = \mathbf{x} \cdot \mathbf{y}$
 - Average (expected) value of the dot-product representations is equal to the true kernel similarity
- 2. $\Pr[|\mathbf{\hat{x}} \cdot \mathbf{\hat{y}} \mathbf{x} \cdot \mathbf{y}| \le \epsilon ||\mathbf{x}|| ||\mathbf{y}||] \ge 1 \delta$
 - Probabilistic bound on how close the approximate dot-product is to the true kernel similarity. It guarantees that with high probability (at least 1 δ, the error in approximation is within a specified tolerance ε.

Algorithm BioSequence2Vec Computation

```
1: Input: Set S of sequences, integers k, p, \Sigma, t
 2: Output: Embedding R
 3: function COMPUTEEMBEDDING(\mathcal{S}, k, p, \Sigma, t)
 4:
            R = []
 5:
           for X \in S do
 6:
                 \hat{x} = [1]
 7:
                 for i = 1 to t do
 8:
                       a_0, a_1, a_2, a_3 \leftarrow random(0, p-1)
 9:
                       for i = 1 to |X| - k + 1 do
                             \alpha \leftarrow X[i: i+k]
10:
                             h \leftarrow a_0 + a_1 \alpha_{\Sigma} + a_2 \alpha_{\Sigma}^2 + a_3 \alpha_{\Sigma}^3
11:
12:
                             h \leftarrow (h \mod p) \mod 2
13:
                             if h = 0 then
14:
                                   \hat{\mathbf{x}}[i] \leftarrow \hat{\mathbf{x}}[i] - 1
15:
                             else
16:
                                   \hat{\mathbf{x}}[i] \leftarrow \hat{\mathbf{x}}[i] + 1
                       \hat{\mathbf{x}}[i] \leftarrow \frac{1}{\sqrt{t}} \times \hat{\mathbf{x}}[i]
17:
18:
                  R.append(\hat{\mathbf{x}})
            Return R
19:
```

Dataset Statistics

Dataset	Detail	Source	Total	Total	Se	quence Length		
			Sequences	classes	Min	Max	Average	
Spike7k	Aligned spike protein sequences to clas- sify lineages of coronavirus in humans	[2]	7000	22	1274	1274	1274.00	
Coronavirus Host	Spike protein sequences to classify hosts effected from coronavirus	[3]	5558	21	9	1584	1272.36	
Human DNA	Unaligned nucleotide sequences to clas- sify gene family to which humans belong	[4]	4380	7	5	18921	1263.59	

Table: Dataset Statistics.

Embedding Properties

Method	Category	Detail	Source	Alignment Free	Computationally Efficient	Space Effi- cient	Low Dim. Embedding
Spike2Vec Spaced k-mers PWM2Vec	Feature Engineering	Take biological sequence as input and design fixed-length numerical embeddings	[5] [6] [7]	√ √ X	√ √ √	√ √ √	× × √
WDGRL	Neural	Take one-hot representation of biological sequence as input and	[8]	x	x	~	✓
AutoEncoder	(NN)	design NN-based embedding method by minimizing loss	[9]	x	x	√	✓
String Kernel	Kernel Matrix	Designs $n \times n$ kernel matrix that can be used with kernel classifiers or with kernel PCA to get feature vector based on principal compo- nents	[10]	4	V	x	4
SeqVec	Pretrained Language Model	Takes biological sequences as in- put and fine-tunes the weights based on a pre-trained model to get final embedding	[11]	√	×	√	√
ProteinBERT	Pretrained Transformer	A pretrained protein sequence model to classify the given bi- ological sequence using Trans- former/Bert	[12]	\checkmark	×	√	\checkmark
BioSequence2Vec (ours)	Hashing	Takes biological sequence as input and design embeddings based on the kernel property of preserving pairwise distance	-	~	~	√	✓

Table: Different methods (ours and SOTA) description.

Results

Spike7k							Human DNA								
Embeddings	Algo.	Acc. ↑	Prec. ↑	Recall ↑	F1 (Weig.)	F1 (Macro) ↑	ROC AUC ↑	Train Time (sec.)↓	Acc. ↑	Prec. ↑	Recall ↑	F1 (Weig.)	F1 (Macro) ↑	ROC AUC ↑	Train Time (sec.)↓
BioSequence2Vec (ours)	SVM NB MLP KNN RF LR DT	0.848 0.732 0.835 0.821 0.863 0.500 0.845	0.858 0.776 0.825 0.818 0.867 0.264 0.856	0.848 0.732 0.835 0.821 0.863 0.500 0.845	0.841 0.741 0.825 0.811 0.854 0.333 0.841	0.681 0.555 0.622 0.616 0.703 0.031 0.683	0.848 0.771 0.819 0.803 0.851 0.500 0.839	9.801 1.440 13.893 1.472 2.627 11.907 0.956	0.555 0.263 0.583 0.613 0.786 0.527 0.663	0.554 0.518 0.598 0.625 0.816 0.522 0.666	0.555 0.263 0.583 0.613 0.786 0.527 0.663	0.543 0.244 0.571 0.615 0.787 0.501 0.664	0.497 0.239 0.541 0.565 0.779 0.457 0.639	0.700 0.572 0.717 0.748 0.846 0.674 0.795	13.251 0.095 70.463 0.313 1.544 29.029 4.064

Table: Classification results (averaged over 5 runs) on **Spike7k** and **Human DNA** datasets for different evaluation metrics. Best values are shown in bold.

Embeddings	Algo.	Acc.	Prec.	Recall	F1 (Weig.)	F1 (Macro)	ROC AUC	Train Time (Sec.)
BioSequence2Vec (ours)	SVM NB MLP KNN RF LR DT	0.848 0.475 0.819 0.817 0.844 0.856 0.805	0.860 0.693 0.818 0.810 0.850 0.853 0.811	0.848 0.475 0.819 0.817 0.844 0.856 0.805	0.842 0.433 0.807 0.810 0.836 0.847 0.802	0.736 0.451 0.681 0.617 0.704 0.781 0.604	0.864 0.719 0.836 0.832 0.831 0.888 0.809	10.559 0.288 101.027 0.938 13.519 62.573 3.467

Table: Classification results (averaged over 5 runs) for different evaluation metrics for **Coronavirus Host Dataset**. The best values are shown in bold.

Nanobody-Antigen Binding Prediction

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Antigen

- Toxin, bacteria, or virus
- Induces an immune response
 - 1. Produces antibodies/nanobodies
- Protein sequence amino acid residues

Source: Microbe Notes

Antibody

- Large and Y-shaped protein
- Identifies and neutralizes antigens

Source: addgene Blog

Nanobody (Nb)

- single-domain and heavy-chain antibodies (sdAb)
- natural occurrence

Nanobody-Antigen Binding

Nanobody bind selectively to a specific antigen

Source: Bioss Antibodies

22/74

イロト 不得 トイヨト イヨト 二日

Nanobody - Applications

- Biotechnology and Medicine
- Therapeutics treatment of SARS-CoV-2
- Diagnostics

Nanobody Design (in vivo)

- Antigen injected in animals
- Blood sample collected after a few months
- Nanobody extracted, cloned, and developed

Limitations:

- Costly [13]
- ▶ Time-consuming [14]
- Animal sacrifice [15]
- Batch-to-batch variation

Nanobody Design (in silico) - Motivation

- Vast protein databases (PDB, etc.) [16, 17]
- Known examples of antigen-nanobody pairs
- Advanced machine learning and deep learning techniques
 - 1. Transformers, neural networks

Nanobody Design (in silico) - Pipeline

- 1. Antigen-nanobody 3D structure prediction
- 2. Binding site prediction
- 3. Molecular docking
- 4. Binding affinity prediction

Nanobody Design (in silico) - Challenges

- Complexity in predicting nanobody 3D structure
- Inaccurate binding site recognition
- Computational costs
- Protein (antigen, nanobody) sequence data >> structural data

Problem Formulation

Before predicting nanobody-antigen interaction

- 1. 3D structures available
- 2. Known binding sites
- 3. Generated antigen-nanobody complex
- ► These steps are:
 - Time-consuming
 - Computationally expensive

Given sequences of antigen-nanobody, predict whether they bind or not

Experimental Setup

A supervised learning problem:

- Known examples of antigen-nanobody sequences Dataset
- Examples labeled as binding or non-binding Ground truth
- Learn a formula of features Classification problem

Dataset

Sequence length statistics for antigen and nanobody sequences

Collected from UniProt¹ and Single Domain Antibody Database (sdAb)²

		Sequence Length Statistics					
Туре	Count	Mean	Min	Max	Std. Dev.	Median	
Antigens Nanobodies	47 365	671.51 122.84	158 104	1816 175	421.24 8.87	480 123	

Statistics for nanobody sequences binding to each antigen

Туре	Mean	Min	Max	Std. Dev.	Median
Nanobodies in each antigen	7.77	1	36	9.28	4

¹https://www.uniprot.org/

²http://www.sdab-db.ca/

Feature Extraction

Extracted features of each nanobody and antigen sequence

- 1. Charge at pH, Grand Average of Hydropathy (GRAVY) [18], molecular weight, aromaticity
- 2. Instability index [19], isoelectric point, secondary structure fraction (helix, turn, and sheet) [20]
- 3. Molar extinction coefficient (reduced and oxidized)
- Obtained Non-Binding Nb-Ag Pairs
 - 1. Pairwise edit distance between antigens and nanobodies proximity matrix
 - 2. 1388 additional Nb-Ag binding pairs
 - 3. 1728 Ng-Ab non-binding pairs in total

Data Visualization - t-SNE

The colored data points show the different antigen categories (47 in total)
Sampling Strategy and Evaluation Metrics

Randomly split:

- Full data into 70:30 training and testing set
- Training set into 90:10 training and validation set
- Experiments repeated 10-folds, and average results reported
- Standard classification metrics:
 - Accuracy, Precision, Recall
 - F1-score (weighted and macro) and Area Under Curve (AUC)

Methods Employed

Embedding Generation - gapped k-mers

- 1. Advantages:
 - 1.1 Increased sensitivity
 - 1.2 Enhanced flexibility
 - 1.3 Comprehensive motif representation
 - 1.4 Improved specificity
- Comparison with baseline models
 - 1. Spike2Vec [5], Minimizers [21], and PWM2Vec [7]
- Machine Learning Classifiers
 - Support Vector Machine (SVM), Naive Bayes (NB), Multi-Layer Perceptron (MLP), K-Nearest Neighbors (KNN), Random Forest (RF), Logistic Regression (LR), and Decision Tree (DT)

Results - Without Sequence Features

Embeddings	Algo.	Acc. ↑	Prec. ↑	Recall ↑	F1 (Weig	g.) 1F1 (Macr	•) ↑ ^{ROC} AUC ↑	Train Time (sec.)↓
	SVM	0.818	0.824	0.818	0.818	0.818	0.819	5.662
	NB	0.813	0.815	0.813	0.813	0.813	0.813	0.103
	MLP	0.844	0.846	0.844	0.844	0.844	0.844	4.075
Spike2Vec	KNN	0.892	0.893	0.892	0.892	0.892	0.892	1.290
	RF	0.906	0.911	0.906	0.906	0.906	0.906	3.725
	LR	0.813	0.815	0.813	0.813	0.813	0.814	2.417
	DT	0.878	0.878	0.878	0.878	0.877	0.878	1.293
	SVM	0.824	0.826	0.824	0.823	0.823	0.823	5.444
	NB	0.791	0.792	0.791	0.790	0.790	0.790	0.091
	MLP	0.844	0.845	0.844	0.844	0.844	0.844	2.997
Minimizers	KNN	0.880	0.880	0.880	0.880	0.880	0.880	1.257
	RF	0.892	0.898	0.892	0.892	0.892	0.893	4.000
	LR	0.811	0.812	0.811	0.811	0.811	0.811	1.343
	DT	0.851	0.851	0.851	0.850	0.850	0.850	1.677
	SVM	0.810	0.812	0.810	0.809	0.809	0.809	5.732
	NB	0.792	0.793	0.792	0.792	0.792	0.792	0.095
	MLP	0.820	0.821	0.820	0.820	0.819	0.820	3.730
PWM2Vec	KNN	0.875	0.875	0.875	0.875	0.875	0.875	1.232
	RF	0.892	0.899	0.892	0.891	0.891	0.892	3.746
	LR	0.804	0.805	0.804	0.804	0.804	0.804	7.137
	DT	0.866	0.866	0.866	0.866	0.866	0.866	1.692
	SVM	0.814	0.816	0.814	0.813	0.813	0.812	5.740
	NB	0.798	0.798	0.798	0.797	0.797	0.796	0.087
Conned	MLP	0.824	0.825	0.824	0.824	0.824	0.824	2.886
dapped	KNN	0.885	0.886	0.885	0.885	0.885	0.885	0.995
K-mers	RF	0.907	0.912	0.907	0.894	0.894	0.908	3.755
	LR	0.812	0.813	0.812	0.812	0.812	0.812	4.395
	DT	0.872	0.872	0.872	0.872	0.871	0.872	1.777

Results - With Sequence Features

Embeddings	Algo.	Acc. ↑	Prec. ↑	Recall ↑	F1 (Weig.)	¶F1 (Macro)	↑ ROC AUC ↑	Train Time (sec.)↓
	SVM	0.791	0.796	0.791	0.790	0.790	0.790	8.804
	NB	0.695	0.737	0.695	0.680	0.678	0.691	0.085
	MLP	0.811	0.814	0.811	0.811	0.811	0.811	2.326
Spike2Vec	KNN	0.844	0.845	0.844	0.844	0.844	0.844	0.953
	KF LD	0.897	0.903	0.897	0.896	0.896	0.898	3.890
	LK	0.827	0.827	0.827	0.827	0.826	0.827	1.183
		0.847	0.848	0.847	0.847	0.847	0.847	1.246
	SVM	0.778	0.783	0.778	0.777	0.777	0.777	10.938
	NB	0.674	0.736	0.674	0.649	0.647	0.670	0.094
	MLP	0.801	0.806	0.801	0.800	0.800	0.800	3.228
Minimizers	KNN	0.842	0.842	0.842	0.842	0.842	0.842	0.827
	RF	0.896	0.902	0.896	0.896	0.896	0.897	3.801
	LR	0.823	0.823	0.823	0.823	0.823	0.823	1.167
	DT	0.846	0.846	0.846	0.845	0.845	0.845	1.297
	SVM	0.766	0.770	0.766	0.765	0.765	0.766	9.569
	NB	0.679	0.726	0.679	0.659	0.657	0.674	0.087
	MLP	0.811	0.813	0.811	0.811	0.811	0.811	2.889
PWM2Vec	KNN	0.828	0.828	0.828	0.827	0.827	0.827	0.768
	RF	0.893	0.901	0.893	0.892	0.892	0.894	3.765
	LR	0.819	0.819	0.819	0.819	0.819	0.819	1.495
	DT	0.851	0.851	0.851	0.851	0.851	0.850	1.279
	SVM	0.785	0.792	0.785	0.784	0.783	0.784	9.270
	NB	0.720	0.745	0.720	0.712	0.711	0.718	0.086
<i>c</i> .	MLP	0.807	0.810	0.807	0.806	0.806	0.806	2.432
Gapped	KNN	0.839	0.839	0.839	0.839	0.838	0.838	0.753
K-mers	RF	0.895	0.901	0.895	0.894	0.894	0.895	3.468
	LR	0.823	0.823	0.823	0.823	0.823	0.823	1.123
	DT	0.860	0.861	0.860	0.860	0.860	0.860	0.955

Discussion

Gapped k-mers spectrum outperforms all other embeddings

- 1. Average accuracy, precision, recall, and ROC-AUC Random forest classifier
- Spike2Vec performs better than other embeddings
 - 1. Weighted and Macro F1 Random forest classifier
- Comparison of embeddings with and without sequence features
 - 1. Multicollinearity and curse of dimensionality
- Student t-test to evaluate the significance of the results
 - 1. p-values predominantly less than 0.05

t-Cell Sequence Classification

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

T Cell Receptor (TCR) Sequences

- Located on the surface of T cells
- Responsible for antigen recognition
- Is a core component in the adaptive immune system
 - 1. Activated in response to specific pathogens or antigens
- Analyzing TCR sequences
 - 1. Help us to classify cancer types
 - 2. Very important in early stage detection or immunotherapy

Figure: Source: https://proteinswebteam.github.io/interpro-blog/potm/2005_3/Page1.htm

Pseudo-Amino Acid Composition

- Pseudo-amino acid composition (PseAAC) represents protein sequences considering the frequency and physicochemical properties of amino acids [22].
- It provides a comprehensive representation compared to traditional amino acid composition [23].
- In PseAAC, each amino acid is represented by numerical values describing characteristics like hydrophobicity, polarity, charge, molecular weight, and solvent accessibility [24].

Pseudo-Amino Acid Composition

Hydrophobicity:

- Hydrophobicity in TCR sequences refers to the tendency of certain amino acids to be hydrophobic [25].
- Represented using a scale that assigns numerical values to amino acids based on hydrophobic nature.
- Uses a window size of 3 for calculation and Kyte-Doolittle scale [18].
- Hydrophobicity score H(S) is calculated as:

$$H(S) = \sum_{i=1}^{L} H(S[i])$$
 (7)

Polarity:

Polarity in TCR sequences refers to the distribution of polar and nonpolar amino acids in variable regions [25].

Charge:

 Charge refers to the distribution of charged amino acids in TCR sequences, especially in variable regions [26].

イロト 不得 トイヨト イヨト ヨー うらつ

Pseudo-Amino Acid Composition

Molecular Weight:

- Sum of atomic weights of all amino acids in TCR proteins [27].
- Calculated as:

Molecular weight
$$=\sum_{i=1}^{N}M_{i}$$
 (8)

Solvent Accessibility:

- Degree to which amino acids in TCR are exposed to solvent [28].
- These properties provide insights into TCR structure, function, antigen recognition, and are useful for targeted immunotherapies and personalized cancer treatments [29, 30, 31, 32, 33].

Algorithm

Algorithm PseAAC2Vec Protein Encoding

	Input: TCR Sequences S, Output: PseAAC2Vec Embedding
1:	$PP \leftarrow$ Dictionary of physicochemical properties
2:	window_size $\leftarrow 3$ \triangleright Hyperparameter, tunned using validation set
3:	$Final_Vectors \leftarrow []$
4:	for seqs in range(len(S)) do
5:	$protein_sequence \leftarrow S[seqs]$
6:	SeqLen
7:	$PL \leftarrow length(physicochemical_properties)$
8:	$VecLen \leftarrow PL \times window_size$
9:	PseAAC2Vec_feature_vector ← zeros(SeqLen, PL)
10:	$PP \leftarrow physicochemical_properties.values()$
11:	for <i>i</i> in range(SeqLen) do
12:	for k, PEncode in enumerate(PP) do
13:	$AA \leftarrow protein_sequence[i]$
14:	$PseAAC2Vec_feature_vector[i, k] \leftarrow PEncode[AA]$
15:	$ExVec \leftarrow \mathbf{zeros}(SeqLen, VecLen + PL)$
16:	for <i>i</i> in range(SeqLen) do
17:	for <i>j</i> in range(window_size) do
18:	if $i - j \ge 0$ then
19:	$AA \leftarrow protein_sequence[i - j]$
20:	for k, PN in enumerate(PP.keys()) do
21:	PEncode = PP[PN]
22:	ExVec[i, j * PL + k] = PEncode[AA]
23:	$ExVec[i, VecLen :] \leftarrow PseAAC2Vec_feature_vector[i]$
24:	$flattened_feature_vector \leftarrow FLATTEN(ExVec)$
25:	Final_Vectors.append(flattened_feature_vector)
26:	return PseAAC2VecEmbedding

Dataset

			Sequence Length Statistics		
Cancer Type	Total Sequences	Unique Sequences	Min.	Max.	Average
Melanoma	8750	7123	9	24	15
Retroperitoneal	5505	4763	9	20	15
Pancreatic	2887	2883	11	25	15
Ovarian	583	512	10	20	15
Total	17725	15281	-	-	-

Table: Dataset Statistics of TCR Sequences. The table shows the total number and the unique number of sequences for each cancer type, the minimum, the average, and the maximum length of TCR sequences in the dataset used for the experiments in this study.

Embeddings	Algo.	Acc. ↑	Prec. ↑	Recall ↑	F1 (Weig.) ↑	F1 (Macro) ↑	ROC AUC ↑	Train Time (sec.) ↓
PWM2Vec	NB MLP KNN RF LR DT	0.3234 0.5199 0.5144 <u>0.5819</u> 0.4943 0.5018	0.4239 0.5078 0.4674 <u>0.5805</u> 0.4885 0.5006	0.3234 0.5199 0.5144 <u>0.5819</u> 0.4943 0.5018	0.2856 0.5128 0.4773 0.5101 0.4882 0.5011	0.2392 0.3899 0.3105 0.3776 0.3662 0.3847	0.5242 0.5995 0.5555 0.5905 0.5856 0.5967	4.2852 77.1383 4.6783 113.3189 505.1448 95.9090
Spike2Vec	NB MLP KNN RF LR DT	0.4645 0.5382 0.5235 <u>0.6041</u> 0.5457 0.5182	0.4863 0.4814 0.4840 <u>0.5650</u> 0.5000 0.5165	0.4645 0.5382 0.5235 <u>0.6041</u> 0.5457 0.5182	0.4569 0.4910 0.4942 <u>0.5503</u> 0.4817 0.5172	0.3359 0.3105 0.3304 <u>0.4120</u> 0.2931 0.3957	0.5755 0.5622 0.5647 <u>0.6124</u> 0.5583 0.6051	0.0380 24.6133 3.1544 20.9789 0.6857 3.2491
String Kernel	NB MLP KNN RF LR DT	0.4464 0.5125 0.4968 <u>0.6030</u> 0.5308 0.4964	0.4664 0.4939 0.4535 <u>0.5603</u> 0.4724 0.4942	0.4464 0.5125 0.4968 <u>0.6030</u> 0.5308 0.4964	0.4477 0.5020 0.4655 <u>0.5365</u> 0.4805 0.4952	0.3324 0.3642 0.3144 <u>0.4082</u> 0.3068 0.3787	0.5706 0.5834 0.5533 <u>0.6111</u> 0.5604 0.5934	0.3123 72.9982 2.2828 40.7817 5.6004 14.2018
WDGRL	NB MLP KNN RF LR DT	0.4850 0.5087 0.4731 <u>0.5559</u> 0.5048 0.4800	0.3820 0.4247 0.4256 <u>0.5202</u> 0.4033 0.4766	0.4850 0.5087 0.4731 <u>0.5559</u> 0.5048 0.4800	0.4254 0.4179 0.4349 <u>0.4934</u> 0.3942 0.4781	0.2522 0.2416 0.2844 <u>0.3679</u> 0.2216 0.3625	0.5275 0.5248 0.5316 0.5798 0.5169 0.5800	0.0074 15.9686 0.8438 4.7567 0.0788 0.2037
Auto- Encoder	NB MLP KNN RF LR DT	0.4230 0.5259 0.5244 <u>0.5836</u> 0.5389 0.4866	0.4219 0.4745 0.4785 <u>0.5864</u> 0.4907 0.4795	0.4230 0.5259 0.5244 <u>0.5836</u> 0.5389 0.4866	0.4031 0.4888 0.4867 <u>0.5102</u> 0.4751 0.4826	0.2767 0.3164 0.3215 <u>0.3748</u> 0.2893 0.3677	0.5323 0.5613 0.5593 <u>0.5880</u> 0.5542 0.5832	0.0510 207.0182 6.2745 35.0135 2.6055 7.7863
SeqVec	NB MLP KNN RF LR DT	0.3466 0.4996 0.5120 <u>0.5675</u> 0.5476 0.4673	0.4820 0.5042 0.4626 <u>0.5905</u> 0.5269 0.4691	0.3466 0.4996 0.5120 <u>0.5675</u> 0.5476 0.4673	0.3049 0.5016 0.4739 0.4822 <u>0.5333</u> 0.4681	0.2568 0.3793 0.3121 0.3438 <u>0.4059</u> 0.3481	0.5438 0.5937 0.5551 0.5727 <u>0.6054</u> 0.5730	<u>5.3837</u> 109.9893 5.4640 166.7319 862.3937 158.9599
Protein Bert	-	0.5344	0.5077	0.5344	0.4724	0.2865	0.5538	301.7492
PseAAC2Vec (ours)	NB MLP KNN RF LR DT	0.3071 0.5417 0.4985 0.6190 0.5401 0.5327	0.4824 0.4876 0.4561 0.5967 0.4976 0.5343	0.3071 0.5417 0.4985 0.6190 0.5401 0.5327	0.1827 0.4908 0.4625 0.5757 0.4729 0.5323	0.1632 0.3082 0.3099 0.4525 0.2847 0.4205	0.5128 0.5646 0.5457 0.6300 0.5505 0.6219	0.3952 17.8969 1.0735 5.6696 130.54 1.6375

<□>
<=>
<=>
<=>
<=>
<=>
<=>
<=>
<=>
<=>
<=>
<=>
<=>
<=>
<=>
<=>
<=>
<=>
<=>
<=>
<=>
<=>
<=>
<=>
<=>
<=>
<=>
<=>
<=>
<=>
<=>
<=>
<=>
<=>
<=>
<=>
<=>
<=>
<=>
<=>
<=>
<=>
<=>
<=>
<=>
<=>
<=>
<=>
<=>
<=>
<=>
<=>
<=>
<=>
<=>
<=>
<=>
<=>
<=>
<=>
<=>
<=>
<=>
<=>
<=>
<=>
<=>
<=>
<=>
<=>
<=>
<=>
<=>
<=>
<=>
<=>
<=>
<=>
<=>
<=>
<=>
<=>
<=>
<=>
<=>
<=>
<=>
<=>
<=>
<=>
<=>
<=>
<=>
<=>
<=>
<=>
<=>
<=>
<=>
<=>
<=>
<=>
<=>
<=>
<=>
<=>
<=>
<=>
<=>
<=>
<=>
<=>
<=>
<=>
<=>
<=>
<=>
<=>
<=>
<=></li

Table

Embedding	Time (sec.)
OHE	39.4524
PWM2Vec	62.1373
String Kernel	1014.61
Auto Encoder	161.623
Bert	257.496
SeqVec	10875.57
Spike2Vec	241.368
WDGRL	20.1513
PseAAC2Vec (ours)	3.7313

Table: Embedding generation time. The best value is shown in bold.

Image Transformation

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Sequence-to-Image Transformation

- We propose Chaos Game Representation-based method, which is an efficient way to convert sequences into images.
- Our proposed embedding method is alignment-free and could improve the "area of interest" within the image by performing biologically meaningful manipulation of a sequence first and then mapping the manipulated sequence into an image

Chaos Game Representation (CGR)

(a) illustrates the CGR-based space allocation for a given *k*-mer in the respective image.(b) shows an example of 3-mers from a given sequence.(c) shows an example of 20-flakes for protein sequences.

Chaos Game Representation (CGR)

- CGR is used to convert sequences into images. Works well for nucleotide sequences.
- ► FCGR follows CGR to get images of protein sequences.
 - Get the x and y axis for an amino acid i using the given equations:

$$x[i] = r \cdot \sin(\frac{2\pi i}{n} + \theta) \tag{9}$$

Here, r is a scaling factor that determines the size of the image, i is the position of the amino acid in the sequence, n is the total number of amino acids in the sequence, and θ is an angle parameter that affects the orientation of the image.

$$y[i] = r \cdot \cos(\frac{2\pi i}{n} + \theta) \tag{10}$$

These equations create a positional mapping of amino acids in a protein sequence onto a 2D plane, allowing the visualization of protein sequences as images. The values of *r* and *θ* can be adjusted to modify the appearance and characteristics of the resulting images.

Spike2CGR

Figure: Workflow of Spike2CGR for a given sequence. For a given spike sequence, steps from (a) to (d) are followed to generate the corresponding Spike2CGR sequence.

Spike2CGR (Image Transformation)

Figure: Graphical representation of a spike sequence of B.1.351 variant (from SARS-CoV-2 dataset) using different methods. Some of the major changes in the images (area of interest) are highlighted using the red boxes.

Classification Models

Two types of classification models are used:

- Tabular Models: 3-layer Tab CNN & 4-layer Tab CNN
- Vision Models: CNN, RESNET (pre-trained), VGG-19 (pre-trained).

Figure: The architectures of the 4-layer CNN model. Here ker represents kernel and str represents stride filter size.

Dataset

	No. of				. of sequenc	of sequences	
Lineage	Region	Labels	No. Mut. S/Gen.	Training	Validation	Testing	
B.1.1.7	UK	Alpha	8/17	9930	2527	3146	
B.1.617.2	India	Delta	8/17	1877	450	456	
P.2	Brazil	Zeta	3/7	1780	432	533	
B.1.429	California	Epsilon	3/5	1079	256	326	
P.1	Brazil	Gamma	10/21	994	245	306	
B.1.526	New York	lota	6/16	847	219	255	
B.1.351	South Africa	Beta	9/21	837	221	258	
B.1.427	California	Epsilon	3/5	835	218	268	
B.1.1.529	South Africa	Omicron	34/53	747	178	253	
C.37	Peru	Lambda	8/21	732	169	228	
B.1.621	Colombia	Mu	9/21	717	168	219	
B.1.525	UK and Nigeria	Eta	8/16	714	187	224	
P.3	Philippines	Theta	8/17	111	30	34	
Total	-	-	-	21200	5300	6238	

Table: Dataset statistics for different coronavirus variants (32738 in total).

DL Model	Method	Acc. ↑	Prec. ↑	Recall ↑	F1 (Weig.) ↑	F1 (Macro) ↑	ROC AUC ↑	Train Time (hrs.) ↓
3-Layer Tab CNN	OHE WDGRL	0.472 0.636	0.301 0.457	0.472 0.636	0.368 0.523	0.060 0.263	0.552 0.594	0.594 0.380
4-Layer Tab CNN	OHE WDGRL	0.637 0.688	0.469 0.517	0.637 0.688	0.528 0.582	0.157 0.227	0.511 0.637	0.977 0.866
1-Layer CNN	Chaos Spike2Vec PWM2Vec Minimizer Spike2CGR	0.700 0.733 0.734 0.743 0.719	0.680 0.690 0.676 0.707 0.730	0.696 0.733 0.734 0.743 0.766	0.651 0.679 0.691 0.709 0.739	0.563 0.679 0.697 0.709 0.717	0.673 0.850 0.844 0.832 0.840	8.195 7.779 5.744 6.171 4.992
% improv. o from SOTA (f Spike2CGR Chaos	1.9	5	7	8.8	15.8	16.7	39.08

DL Model	Method	Acc. ↑	Prec. ↑	Recall ↑	F1 (Weig.) ↑	F1 (Macro) ↑	ROC AUC ↑	Train Time (hrs.) ↓
2-Layer CNN	Chaos Spike2Vec PWM2Vec Minimizer Spike2CGR	0.700 0.740 0.740 0.710 0.633	0.669 0.730 0.700 0.710 0.577	0.697 0.744 0.739 0.710 0.633	0.652 0.729 0.688 0.681 0.559	0.564 0.736 0.694 0.581 0.376	0.645 0.725 0.676 0.771 0.663	6.394 7.329 6.615 6.426 6.193
% improv. from SOTA	of Spike2CGR Chaos	-6.7	-9.2	-6.4	-9.3	-18 .8	1.8	3.14

DL Model	Method	Acc. ↑	Prec. ↑	Recall ↑	F1 (Weig.) ↑	F1 (Macro) ↑	ROC AUC ↑	Train Time (hrs.) ↓
3-Layer CNN	Chaos Spike2Vec PWM2Vec Minimizer Spike2CGR	0.740 0.750 0.751 0.750 0.770	0.722 0.723 0.715 0.729 0.724	0.739 0.750 0.751 0.750 0.767	0.717 0.715 0.716 0.721 0.734	0.696 0.725 0.732 0.719 0.712	0.809 0.838 0.846 0.851 0.845	5.658 6.919 7.458 6.332 4.758
% improv. from SOTA	of Spike2CGR Chaos	3	0.2	2.8	1.7	1.6	3.6	31.23

DL Model	Method	Acc. ↑	Prec. ↑	Recall ↑	F1 (Weig.) ↑	F1 (Macro) ↑	ROC AUC ↑	Train Time (hrs.) ↓
4-Layer CNN	Chaos Spike2Vec PWM2Vec Minimizer Spike2CGR	0.740 0.750 0.750 0.750 0.750 0.7708	0.686 0.686 0.733 0.726 0.731	0.737 0.749 0.745 0.750 0.768	0.706 0.712 0.736 0.706 0.738	0.678 0.720 0.747 0.709 0.714	0.728 0.842 0.847 0.846 0.843	7.986 7.447 7.720 7.068 10.658
% improv. from SOTA	of Spike2CGR Chaos	3	4.5	3.1	3.2	3.6	11.5	-33.45

DL Model	Method	Acc. ↑	Prec. ↑	Recall ↑	F1 (Weig.) ↑	F1 (Macro) ↑	ROC AUC ↑	Train Time (hrs.) ↓
RESNET50 Pre- Trained Model	Chaos Spike2Vec PWM2Vec Minimizer Spike2CGR	0.680 0.711 0.680 0.723 0.740	0.644 0.657 0.589 0.665 0.661	0.676 0.710 0.675 0.723 0.736	0.641 0.666 0.606 0.673 0.683	0.547 0.644 0.507 0.647 0.626	0.743 0.759 0.757 0.802 0.780	10.654 10.746 10.264 11.732 14.299
% improv. from SOTA	of Spike2CGR Chaos	6	-1.7	6	4.2	7.9	3.7	-34.21

DL Model	Method	Acc. ↑	Prec. ↑	Recall ↑	F1 (Weig.) ↑	F1 (Macro) ↑	ROC AUC ↑	Train Time (hrs.) ↓
VGG-19 Pre- Trained Model	Chaos Spike2Vec PWM2Vec Minimizer Spike2CGR	0.480 0.470 0.464 0.480 0.495	0.233 0.221 0.215 0.227 0.245	0.483 0.470 0.464 0.477 0.495	0.315 0.301 0.294 0.308 0.327	0.050 0.049 0.048 0.496 0.050	0.500 0.500 0.500 0.500 0.500	27.398 26.599 23.781 24.459 24.355
% improv. from SOTA	of Spike2CGR Chaos	1.5	1.2	1.2	1.2	0	0	8.4

Molecular Properties (Weights)

- Kyte and Doolittle (KD) Hydropathy Scale
 - 1. Assigns numerical values to amino acids based on their hydrophobicity/hydrophilicity, used in predicting protein structure and function.
- Eisenberg Hydrophobicity Scale
 - 1. Quantifies the hydrophobicity of amino acids, aiding in protein structure prediction and understanding protein interactions with hydrophobic environments.
- Hydrophilicity Scale
 - Measures the propensity of amino acids to interact with water, crucial for understanding protein solubility, folding, and function in aqueous environments.
- Flexibility Of The Characters
 - 1. Evaluates the flexibility or rigidity of amino acids, important for predicting protein dynamics, conformational changes, and flexibility in molecular interactions.
- Hydropathy Scale
 - 1. Ranks amino acids based on their hydrophobic or hydrophilic nature, assisting in studying protein folding, membrane protein structure, and transmembrane domains.

イロト 不得 トイヨト イヨト ヨー うらつ

Workflow

Figure: Workflow of the proposed method for creating an image of a sequence.

Dataset

		Rabies Sequence Length			Number of Sequences			
Host Name	Count	Min.	Max.	Average	Training	Validation	Testing	
Canis Familiaris	9065	90	11928	1600.50	5802	1450	1813	
Bos Taurus	2497	117	11928	995.29	1599	399	499	
Vulpes Vulpes	2221	133	11930	2923.77	1422	355	444	
Felis Catus	1125	90	11928	1634.43	720	180	225	
Procyon Lotor	884	291	11926	6763.80	567	141	176	
Desmodus Rotundus	875	164	11923	1051.50	560	140	175	
Mephitis Mephitis	864	220	11929	1266.59	554	138	172	
Homo Sapiens	838	101	11928	1537.85	537	134	167	
Eptesicus Fuscus	718	264	11924	1144.35	460	115	143	
Skunk	492	211	11928	6183.26	316	78	98	
Tadarida Brasiliensis	270	264	11923	1175.67	173	43	54	
Equus Caballus	202	163	11924	1376.74	130	32	40	
Total	20051	-	-	-	-	-	-	

Table: Dataset Statistics for Rabies data.

Baselines

Feature-engineering-based methods

- One Hot Encoding (OHE): created embeddings are sparse and face curse of dimensionality challenge.
- Wasserstein Distance Guided Representation Learning (WDGRL): require large training data for optimal performance.
- Position Specific Scoring Matrix (PSSM)
- Image-based method
 - Frequency Matrix-based Chaos Game Representation (FCGR): 1-to-1 mapping between the amino acids and pixels.

	Method	Acc. ↑	Prec. ↑	Recall ↑	F1 (Weig.) \uparrow	F1 (Macro) ↑	ROC AUC ↑	Train Time (Sec.)↓
NB	OHE	0.124	0.447	0.124	0.134	0.195	0.585	979.44
	WDGRL	0.514	0.441	0.514	0.410	0.184	0.575	0.01
	PSSM2Vec	0.125	0.296	0.125	0.072	0.105	0.58	0.04
3 Layer Tab CNN	OHE WDGRL PSSM2Vec	0.451 0.450 0.452	0.203 0.202 0.204	0.451 0.450 0.452	0.280 0.279 0.281	0.050 0.049 0.051	0.500 0.500 0.500	4191.34 1737.65 2040.81
4 Layer Tab CNN	OHE WDGRL PSSM2Vec	0.452 0.535 0.450	0.204 0.318 0.204	0.452 0.535 0.450	0.281 0.395 0.282	0.051 0.103 0.052	0.500 0.500 0.500	5974.26 964.97 3790.09
ViT	Chaos	0.448	0.201	0.448	0.277	0.051	0.500	2943.45
	KD	0.440	0.194	0.440	0.269	0.050	0.500	3593.00
	Eisen.	0.465	0.216	0.465	0.295	0.052	0.500	3474.12
	Flex.	0.441	0.194	0.441	0.270	0.051	0.500	3035.72
	Hydrophil.	0.455	0.207	0.455	0.285	0.052	0.500	2829.95
	Hydropathy	0.449	0.201	0.449	0.278	0.051	0.500	3029.90
CNN	Chaos	0.780	0.763	0.780	0.767	0.662	0.813	12505.91
	KD	0.771	0.757	0.771	0.756	0.647	0.807	13331.11
	Eisen.	0.787	0.779	0.787	0.773	0.668	0.810	14127.47
	Flex.	0.775	0.763	0.775	0.758	0.647	0.807	13068.88
	Hydrophil.	0.785	0.770	0.785	0.774	0.659	0.817	14286.38
	Hydropathy	0.773	0.766	0.773	0.765	0.653	0.809	13115.00
Pretrain	Chaos	0.202	0.365	0.202	0.230	0.081	0.500	146831.05
	KD	0.210	0.370	0.210	0.229	0.079	0.510	147221.45
	Eisen.	0.284	0.451	0.284	0.364	0.095	0.530	161828.01
	Flex.	0.274	0.441	0.274	0.387	0.087	0.500	144477.50
	Hydrophil.	0.283	0.431	0.283	0.363	0.093	0.521	150921.41
	Hydropathy	0.252	0.331	0.252	0.323	0.073	0.500	142441.85

Table: The top 2 best values for each evaluation metric are shown in bold.

Figure: Images generated using Chaos and Eisenberg encoding techniques for a sequence against Cytoplasm location from protein subcellular dataset along with their respective Saliency Maps (S.M.). Some of the major differences between the original images are indicated using the red boxes. The blue color in the saliency maps indicates the most importance. This figure is best seen in colors.

Figure
The general formula [34] of the Bézier curve is

$$BZ(t) = \sum_{i=0}^{n} {n \choose i} t^{i} (1-t)^{n-i} P_{i}$$
(11)

where $0 \le t \le 1$, P_i are known as control points and are elements of \mathbb{R}^k , and $k \le n$.

To construct the protein images, we employ a Bézier curve with n = 3and k = 2. As images consist of x and y coordinates, therefore k = 2 is used. The formulas to determine the coordinates for representing an amino acid in the respective generated image are,

$$x = (1-t)^3 \cdot P_{0_x} + 3 \cdot (1-t)^2 \cdot t \cdot P_{1_x} + 3 \cdot (1-t) \cdot t^2 \cdot P_{2_x} + t^3 \cdot P_{3_x}$$
(12)

$$y = (1-t)^3 \cdot P_{0_y} + 3 \cdot (1-t)^2 \cdot t \cdot P_{1_y} + 3 \cdot (1-t) \cdot t^2 \cdot P_{2_y} + t^3 \cdot P_{3_y}$$
(13)

```
Input: Sequence seq. No. of Parameters m
   Output: Image img
1: conPoint = \{\}
2: for i, aa \in seq do:
3:
       conPoint[aa] = [i, ASCII(aa)]
4: xCord = []
5: vCord = \Pi
6: t_Val = \text{Get } m \text{ pairs} \in [0, 1]
7: ite = 3
8: for a \in seq : do
9:
       org_point = conPoint[a]
10:
         points = [org_point]
11:
         for i \in (ite) : do
12:
            dev = Get_Random_Pair
13:
            mod\_point = org\_point + dev
14:
            points.append(mod_point)
15:
         curve_point = Get_Bezier_Point(points, t_Val)
16:
         xCord = curve_point[:0]
17:
         yCord = curve_point[:1]
18: img = plot(xCord, yCord)
19: return(img)
```

▷ dictionary for control points
 ▷ every unique amino acid aa in seq
 ▷ assign control point the index i and ASCII of aa
 ▷ list for x coordinates
 ▷ list for y coordinates
 ▷ list of m pairs of parameters
 ▷ no. of deviations pair points. It can have any value.
 ▷ every amino acid a in seq
 ▷ every amino acid a in seq

b get a random pair
b get a modified control point

▷ get bezier curve points from bezier func
 ▷ get × coords of curve
 ▷ get y coords of curve
 ▷ get image by plotting x & y coords

Figure: The workflow of our system to create an image from a given sequence and a number of parameters m. We have used "MAVM" as an input sequence here. Note that the *cur_Pts* consists of a set of values for x coordinates and y coordinates.

Figure: The Bézier curve method-based images created for two sequences from the ACP dataset. One sequence belongs to the active class of the dataset, while the other is from the inactive class.

Dataset

		Protein Subcellular Sequence Leng					
Subcellular Locations	Count	Min.	Max.	Average			
Cytoplasm	1411	9	3227	337.32			
Plasma Membrane	1238	47	3678	462.21			
Extracellular Space	843	22	2820	194.01			
Nucleus	837	16	1975	341.35			
Mitochondrion	510	21	991	255.78			
Chloroplast	449	71	1265	242.03			
Endoplasmic Reticulum	198	79	988	314.64			
Peroxisome	157	21	906	310.75			
Golgi Apparatus	150	116	1060	300.70			
Lysosomal	103	101	1744	317.81			
Vacuole	63	60	607	297.95			
Total	5959	-	-	-			

Results

Category	DL Model	Method	Acc. ↑	Prec. ↑	$Recall \uparrow$	F1 (Weig.) ↑	F1 (Macro)	ROC AUC ↑	Train Time (hrs.) \downarrow
Vision Transformer	ViT % improv. FCGR	FCGR RandmCGR Spike2CGR Bézier of Bézier from	0.226 0.222 0.222 0.462 23.6	0.051 0.049 0.051 0.254 20.3	0.226 0.222 0.222 0.462 23.6	0.083 0.080 0.083 0.327 24.4	0.033 0.033 0.147 0.147 11.4	0.500 0.500 0.500 0.572 7.2	0.180 0.154 0.176 0.160 11.11
	% impro. Spike2CGR	of Bézier from	24	20.3	24	24.4	0	7.2	-9.09
Pretrained Vision Models	ResNet- 50	FCGR RandmCGR Spike2CGR Bézier	0.368 0.293 0.368 <u>0.964</u>	0.268 0.174 0.175 <u>0.967</u>	0.368 0.293 0.368 <u>0.964</u>	0.310 0.211 0.214 <u>0.961</u>	0.155 0.102 0.105 <u>0.907</u>	0.556 0.527 0.565 <u>0.948</u>	3.831 13.620 10.992 11.415
	% improv. FCGR	of Bézier from	59.6	69.9	59.6	65.1	75.2	39.2	-197.96
	% impro. Spike2CGR	of Bézier from	59.6	79.2	59.6	74.7	80.2	38.3	-3.8

Results

Category	DL Model	Method	Acc. ↑	Prec. ↑	Recall ↑	F1 (Weig.) ↑	F1 (Macro)	ROC AUC ↑	Train Time (hrs.) \downarrow
Pretrained Vision Models	VGG-19	FCGR RandmCGR Spike2CGR Bézier	0.316 0.288 0.351 0.896	0.209 0.192 0.352 0.879	0.316 0.288 0.351 0.896	0.241 0.218 0.333 0.873	0.114 0.105 0.211 0.680	0.533 0.525 0.550 0.840	14.058 26.136 19.980 18.837
	% improv. of Bézier from FCGR		58	67	58	63.2	56.6	30.7	-33.99
	% impro. o Spike2CGR	of Bézier from	54.5	52.7	54.5	56.3	46.9	29	5.7
	EfficientNet	FCGR RandmCGR Spike2CGR Bézier	0.100 0.284 0.320 0.834	0.088 0.107 0.230 0.787	0.100 0.284 0.320 0.834	0.094 0.152 0.230 0.797	0.035 0.078 0.200 0.483	0.532 0.500 0.500 0.751	31.194 30.223 25.497 20.312
	% improv. FCGR	of Bézier from	73.4	69.9	73.4	70.3	44.8	21.9	34.88

Thank you for your attention !

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Feel Free To Contact Me

- Website: https://sarwanpasha.github.io/
- Google Scholar: https: //scholar.google.com/citations?user=9dtXSoAAAAAJ&hl=en

References

- J. L. Carter and M. N. Wegman, "Universal classes of hash functions," in *ACM symposium on Theory of comp.*, 1979, pp. 106–112.
- GISAID Website, https://www.gisaid.org/, 2021, [Online; accessed 29-December-2021].
- B. E. Pickett, E. L. Sadat, Y. Zhang, J. M. Noronha, R. B. Squires, V. Hunt, M. Liu, S. Kumar, S. Zaremba, Z. Gu *et al.*, "Vipr: an open bioinformatics database and analysis resource for virology research," *Nucleic acids research*, vol. 40, no. D1, pp. D593–D598, 2012.
- Human DNA, https://www.kaggle.com/code/nageshsingh/ demystify-dna-sequencing-with-machine-learning/data, 2022, [Online; accessed 10-October-2022].
- S. Ali and M. Patterson, "Spike2vec: An efficient and scalable embedding approach for covid-19 spike sequences," in *IEEE International Conference on Big Data (Big Data)*, 2021, pp. 1533–1540.

- R. Singh, A. Sekhon, K. Kowsari, J. Lanchantin, B. Wang, and Y. Qi, "Gakco: a fast gapped k-mer string kernel using counting," in *Joint European Conference on Machine Learning and Knowledge Discovery in Databases*, 2017, pp. 356–373.
- S. Ali, B. Bello, P. Chourasia, R. T. Punathil, Y. Zhou, and M. Patterson, "Pwm2vec: An efficient embedding approach for viral host specification from coronavirus spike sequences," *MDPI Biology*, 2022.
- J. Shen, Y. Qu, W. Zhang, and Y. Yu, "Wasserstein distance guided representation learning for domain adaptation," in *AAAI conference* on artificial intelligence, 2018.
- J. Xie, R. Girshick, and A. Farhadi, "Unsupervised deep embedding for clustering analysis," in *International conference on machine learning*, 2016, pp. 478–487.
- S. Ali, B. Sahoo, M. A. Khan, A. Zelikovsky, I. U. Khan, and M. Patterson, "Efficient approximate kernel based spike sequence classification," *IEEE/ACM Transactions on Computational Biology* and Bioinformatics, 2022.

- M. Heinzinger, A. Elnaggar, Y. Wang, C. Dallago, D. Nechaev, F. Matthes, and B. Rost, "Modeling aspects of the language of life through transfer-learning protein sequences," *BMC bioinformatics*, vol. 20, no. 1, pp. 1–17, 2019.
- N. Brandes *et al.*, "Proteinbert: A universal deep-learning model of protein sequence and func." *Bioinformatics*, vol. 38, no. 8, 2022.
- A. Ramon, A. Saturnino, K. Didi, M. Greenig, and P. Sormanni, "Abnativ: Vq-vae-based assessment of antibody and nanobody nativeness for engineering, selection, and computational design," *bioRxiv*, pp. 2023–04, 2023.
- C. Ye, W. Hu, and B. Gaeta, "Prediction of antibody-antigen binding via machine learning: Development of data sets and evaluation of methods," *JMIR Bioinformatics and Biotechnology*, vol. 3, no. 1, p. e29404, 2022.
- N. L. Miller, T. Clark, R. Raman, and R. Sasisekharan, "Learned features of antibody-antigen binding affinity," *Frontiers in Molecular Biosciences*, vol. 10, p. 1112738, 2023.

- H. M. Berman, J. Westbrook, Z. Feng, G. Gilliland, T. N. Bhat, H. Weissig, I. N. Shindyalov, and P. E. Bourne, "The protein data bank," *Nucleic acids research*, vol. 28, no. 1, pp. 235–242, 2000.
- S. K. Burley, H. M. Berman, C. Bhikadiya, C. Bi, L. Chen, L. Di Costanzo, C. Christie, K. Dalenberg, J. M. Duarte, S. Dutta *et al.*, "Rcsb protein data bank: biological macromolecular structures enabling research and education in fundamental biology, biomedicine, biotechnology and energy," *Nucleic acids research*, vol. 47, no. D1, pp. D464–D474, 2019.
 - J. Kyte and R. F. Doolittle, "A simple method for displaying the hydropathic character of a protein," *Journal of molecular biology*, vol. 157, no. 1, pp. 105–132, 1982.
- K. Guruprasad, B. B. Reddy, and M. W. Pandit, "Correlation between stability of a protein and its dipeptide composition: a novel approach for predicting in vivo stability of a protein from its primary sequence," *Protein Engineering, Design and Selection*, vol. 4, no. 2, pp. 155–161, 1990.
- B. Haimov and S. Srebnik, "A closer look into the α -helix basin," *Scientific reports*, vol. 6, no. 1, p. 38341, 2016.

M. Roberts, W. Hayes, B. R. Hunt, S. M. Mount, and J. A. Yorke, "Reducing storage requirements for biological sequence comparison," *Bioinformatics*, vol. 20, no. 18, pp. 3363–3369, 2004.

K.-C. Chou, "Prediction of protein cellular attributes using pseudo-amino acid composition," *Proteins: Structure, Function, and Bioinformatics*, vol. 43, no. 3, pp. 246–255, 2001.

- B. Rozemberczki, A. Gogleva, S. Nilsson, G. Edwards, A. Nikolov, and E. Papa, "Moomin: Deep molecular omics network for anti-cancer drug combination therapy," in *International Conference on Information & Knowledge Management (CIKM)*, 2022, pp. 3472–3483.
- C.-H. Tung, C.-H. Chien, C.-W. Chen, L.-Y. Huang, Y.-N. Liu, and Y.-W. Chu, "Quatgo: Protein quaternary structural attributes predicted by two-stage machine learning approaches with heterogeneous feature encoding," *Plos one*, vol. 15, no. 4, p. e0232087, 2020.
- D. Chowell, S. Krishna, P. D. Becker, C. Cocita, J. Shu, X. Tan, P. D. Greenberg, L. S. Klavinskis, J. N. Blattman, and K. S. Anderson, "Tcr contact residue hydrophobicity is a hallmark of

immunogenic cd8+ t cell epitopes," *Proceedings of the National Academy of Sciences*, vol. 112, no. 14, pp. E1754–E1762, 2015.

- P. F. Robbins, Y. F. Li, M. El-Gamil, Y. Zhao, J. A. Wargo, Z. Zheng, H. Xu, R. A. Morgan, S. A. Feldman, L. A. Johnson *et al.*, "Single and dual amino acid substitutions in tcr cdrs can enhance antigen-specific t cell functions," *The Journal of Immunology*, vol. 180, no. 9, pp. 6116–6131, 2008.
- Ø. Molberg, N. Solheim flÆte, T. Jensen, K. E. Lundin, H. Arentz-Hansen, O. D. Anderson, A. K. Uhlen, and L. M. Sollid, "Intestinal t-cell responses to high-molecular-weight glutenins in celiac disease," *Gastroenterology*, vol. 125, no. 2, pp. 337–344, 2003.
 - W. Zhang, A. Young, M. Imarai, S. G. Nathenson, and J. C. Sacchettini, "Crystal structure of the major histocompatibility complex class i h-2kb molecule containing a single viral peptide: implications for peptide binding and t-cell receptor recognition." *Proceedings of the National Academy of Sciences*, vol. 89, no. 17, pp. 8403–8407, 1992.
- M. Smid, F. G. Rodríguez-González, A. M. Sieuwerts, R. Salgado,
 W. J. Prager-Van der Smissen, M. V. D. Vlugt-Daane,
 A. Van Galen, S. Nik-Zainal, J. Staaf, A. B. Brinkman *et al.*,

"Breast cancer genome and transcriptome integration implicates specific mutational signatures with immune cell infiltration," *Nature communications*, vol. 7, no. 1, p. 12910, 2016.

R. Wei, H. Liu, C. Li, X. Guan, Z. Zhao, C. Ma, X. Wang, and Z. Jiang, "Computational identification of 29 colon and rectal cancer-associated signatures and their applications in constructing cancer classification and prognostic models," *Frontiers in Genetics*, p. 740, 2020.

- I. Alicia Luthy, A. Bruzzone, and C. Perez Pinero, "Adrenergic action in breast cancer," *Current Cancer Therapy Reviews*, vol. 8, no. 2, pp. 90–99, 2012.
- V. Pourteimoor, S. Mohammadi-Yeganeh, and M. Paryan, "Breast cancer classification and prognostication through diverse systems along with recent emerging findings in this respect; the dawn of new perspectives in the clinical applications," *Tumor Biology*, vol. 37, pp. 14479–14499, 2016.

Y. Sun, W. Du, L. L. Yang, M. Dai, Z. Y. Dou, Y. X. Wang, J. Liu, and G. Zheng, "Computational methods for recognition of cancer protein markers in saliva," *Math. Biosci. Eng*, vol. 17, pp. 2453–2469, 2020. S. Baydas and B. Karakas, "Defining a curve as a bezier curve," *Journal of Taibah University for Science*, vol. 13, no. 1, pp. 522–528, 2019.