

A New Direction in Membranolytic Anticancer Peptides Classification: Combining Spaced k-mers with Chaos Game Representation.

Taslim Murad, Sarwan Ali, Murray Patterson

INNS 2023

Table of Content

- Motivation
- Introduction
- Existing Works
- Proposed System
- Experimental Setup
- Results & Discussion
- Conclusion
- References

Motivation

- Membranolytic Anticancer Peptides (ACPs):
 - Small protein sequences.
 - Used as breast cancer therapeutics
 - delay cellular resistance development and eliminate some common chemotherapy challenges, like cytotoxicity, aftereffect, etc.
- Breast cancer is a leading cause of death among women globally.
- Identifying the potent ACPs is a vital contribution towards breast cancer treatment.

Introduction

- Proposes Chaos Graph Representation (CGR)-based method to convert ACPs into images for their analysis.
- Explored the use of secant and cosecant functions as an alternatives in CGR.
- Used Spaced k-mers of a sequence as an alternate way to manipulate its amino acids rather than the original sequence.
- Enabled the deep learning models application for ACPs analysis.

Existing Works

Many works exits to perform protein sequence analysis and some of them are summarized as follow,

Methods	Drawbacks
One-hot encoding [2]	Sparsity and curse of dimensionality
WDGRL (neural network based) [3]	Require large training data to get optimal feature representation
K-mer based methods [4]	Sparsity and computationally expensive
FCGR (image based) [1]	Only 1-to-1 mapping of amino acids to pixels.

Proposed System

- Used spaced k-mers to get the images instead of original peptide sequences.
 - spaced k-mers provide more meaningful manipulation of amino acids, so they enable more information about the sequence to be captured in generated image.
 - Enhance predictive performance.
- Spaced k-mers are introduced to overcome the sparsity and high-dimensionality challenges associated with k-mers.
- We use one existing (P-CGR[1]) and 3 different novel strategies (Static, Random, RCGR) to do the image encoding of our peptide sequence data.

Proposed System

Algorithm 1 Spaced k-mers Algorithm

Input: A biological sequence S , k-mer length k , and gap size g	
Output: A set of spaced k-mers for the given sequence	
1: $K = \{\}$	▶ Initialize an empty set of spa
2: for $i = 0$ to len(S) - (k + g) do	
3: $k-mer = S[i:i+k]$	
4: spaced-k-mer = k-mer[0:g]	▶ `
5: K.append(spaced-k-mer)	
6: end for	
7: return set <i>K</i>	

aced k-mers

where g < k

Proposed System: Protein-CGR[1]

N-flakes based image generation method for protein sequences.

Algorithm 2 P-CGR	
Input: Peptide Sequences	
Output: 2D Image Representations	
1: for seq in sequences do	
2: $x, y \leftarrow [1], [1]$	Initialize the starting point
3: $point \leftarrow [1, 1]$	
4: for aa in seq do	Loop through the sequence
5: $x = sin(\frac{2\pi j}{ seq })$	▹ From Equation 1
6: $y = cos(\frac{2\pi j}{ seq })$	► From Equation 1
7: $coord \leftarrow [x, y]$	
8: $point \leftarrow \frac{point+coord}{2}$	
9: x.append(point[0])	
10: <i>y.append(point</i> [1])	
11: end for	
12: $image_{seq} \leftarrow \text{GenerateImage}(x, y)$	
13: end for	
14: return(<i>image</i>)	

Proposed System: Static-CGR

Amino Acid	X-Axis Value	Y-Axis Value	Amino Acid	X-Axis Value	Y-Axis Value
A	1	0	С	0.5	0.5
D	0	1	Е	0.5	1.5
F	1	2	G	1.5	0
Н	1.5	1	Ι	2	1
K	0	0	L	2	0
Μ	2	2	Ν	0.5	0
Р	2	0.5	Q	0	0.5
R	0.5	2	S	2	0.5
Т	1	1	V	2	1
W	0	2	Y	1	2

Table 1: Static Amino acids positions/coordinates for x and y axis in the 2D image.

orithm 3 Static Chaos Game Representation
Input: Peptide Sequences
Output: 2D Image Representations
for seq in sequences do
$x, y \leftarrow [1], [1]$
$point \leftarrow [1, 1]$
for aa in seq do
$coord \leftarrow AminoAcidCoord(aa)$
$point \leftarrow \frac{point+coord}{2}$
x.append(point[0])
y.append(point[1])
end for
$image_{seq} \leftarrow \text{GenerateImage}(x, y)$
end for
return(<i>image</i>)

Proposed System: Random-CGR

 Utilizes a random function (instead of using pre-defined static values) to assign axis values to any amino acid.

```
Algorithm 4 Random Chaos Game Representation
    Input: Peptide Sequences
    Output: 2D Image Representations
 1: for seq in sequences do
        x, y \leftarrow [1], [1]
                                                                                                  ▶ Initialize the starting point
 2:
        point \leftarrow [1, 1]
 3:
        for aa in seq do
                                                                                                 ▶ Loop through the sequence
 4:
            x = \text{GenerateRandomNumber}()
 5:
            y = GENERATERANDOMNUMBER()
 6:
            coord \leftarrow [x, y]
 7:
            point \leftarrow \frac{point+coord}{2}
 8:
            x.append(point[0])
 9:
10:
            y.append(point[1])
        end for
11:
        image_{seg} \leftarrow \text{GenerateImage}(x, y)
12:
13: end for
14: return(image)
```

Proposed System: Rectangular-CGR

Same as P-CGR but uses secant and cosecant.

Algorithm 5 RCGR	
Input: Peptide Sequences	
Output: 2D Image Representations	
1: for seq in sequences do	
$2: \qquad x, y \leftarrow [1], [1]$	Initialize the starting point
3: $point \leftarrow [1, 1]$	
4: for aa in seq do	Loop through the sequence
5: $x = secant(\frac{2\pi j}{ seq })$	▹ From Equation 2
6: $y = cosecant(\frac{2\pi j}{ seq })$	▶ From Equation 2
7: $coord \leftarrow [x, y]$	
8: $point \leftarrow \frac{point+coord}{2}$	
9: x.append(point[0])	
10: y.append(point[1])	
11: end for	
12: $image_{seq} \leftarrow \text{GenerateImage}(x, y)$	
13: end for	
14: return(<i>image</i>)	

Proposed System: Example Images

Figure 1: Graphical representations of different methods using a randomly selected peptide sequence belonging to a *moderately active* category generated by different methods using the spaced *k*-mers of the sequence.

Proposed System: Contributions

- We propose a new image-based approach for ACPs classification.
- We explore the use of secant and cosecant functions as an alternative to sine and cosine functions in the P-CGR technique to generate a more rectangular mapping.
- We investigate the usage of a pre-defined set of values and a randomly generated set of values of axis projection to generate 2D images of peptide sequences.
- We examine the usage of Spaced k-mers as a way to manipulate the amino acids within biological sequences to get the graphical representations.
- By demonstrating the performance of our proposed approach on an ACP dataset, we show that our system is able to classify the peptide sequences with higher accuracy.
- Our work provides a new direction for the classification of ACP sequences which could be used for breast cancer treatment.

Experimental Setup: Dataset Statistics

The dataset has peptides (protein sequences) and their anticancer activity (target labels) on breast cancer cell lines.

	Count	Peptic	le Sequen	ce Length	Number of Sequences		
ACPs Category		Min.	Max.	Average	Training	Validation	Testing
Inactive-Virtual	750	8	30	16.64	540	60	150
Moderate Active	98	10	38	18.44	71	7	19
Inactive-Experimental	83	5	38	15.02	61	6	16
Very Active	18	13	28	19.33	14	1	3
Total	949	-	-	-	-	-	-

Experimental Setup: Baseline Methods

- One-Hot Encoding (OHE)[2]:
 - Create binary feature vectors of the sequences.
- Wasserstein Distance Guided Representation Learning (WDGRL)[3]:
 - Use a neural network to extract numerical embeddings of the sequences.
- ✤ P-CGR[1]:
 - Image-based baseline.

Experimental Setup: Classification Models

- The evaluation metrics are,
 - average accuracy, precision, recall, F1 (weighted), F1 (macro), Receiver Operator Characteristic Curve Area Under the Curve (ROC AUC), and training run-time.

Туре	Classification Models				
DL	Vision	1-Layer CNN, 2-Layer CNN, 3-Layer CNN, 4-Layer CNN, RESNET50-pretrained, VGG19-pretrained			
	Tabular	3-Layer Tab CNN, 4-Layer Tab CNN			

For training, the DL models follow 80-20% train-test split, with learning rate 0.003 for tabular &
 0.001 for vision, batch size 64, epochs 10, optimizer ADAM, and loss function NLL.

Results & Discussion

DL Model	Method	Acc. ↑	Prec. ↑	Recall ↑	F1 (Weig.) ↑	F1 (Macro) ↑	ROC AUC↑	Train Time (hrs.)↓
3-Layer Tab CNN	OHE [4] WDGRL [9]	0.768 0.615	0.839 0.740	0.768 0.615	0.790 0.660	0.452 0.326	0.719 0.603	0.042
4-Layer Tab CNN	OHE [4] WDGRL [9]	0.796 0.631	0.843 0.754	0.796 0.631	0.807 0.673	0.474 0.346	0.736 0.623	0.056
1-Layer CNN	P-CGR Static Random RCGR S-P-CGR S-Static	0.863 0.849 0.792 0.796 0.842 0.835	0.831 0.820 0.638 0.756 0.810 0.795	0.863 0.849 0.792 0.796 0.842 0.835	0.844 0.825 0.707 0.773 0.819 0.809	0.490 0.467 0.221 0.385 0.423 0.409	0.677 0.657 0.497 0.598 0.637 0.627	0.357 0.271 0.404 0.342 0.412 0.312
	S-Random S-RCGR	0.701 0.803	0.579	0.701 0.803	0.599	0.241 0.347	0.511 0.563	1.385
2-Layer CNN	P-CGR Static Random RCGR S-P-CGR S-Static	0.852 0.821 0.800 0.821 0.863 0.856	0.833 0.710 0.640 0.809 0.835 0.827	0.852 0.821 0.800 0.821 0.863 0.856	0.837 0.759 0.711 0.775 0.842 0.836	0.489 0.318 0.222 0.372 0.467 0.463	0.676 0.566 0.500 0.584 0.666 0.662	0.419 0.536 0.389 0.332 0.430 0.385
	S-Random S-RCGR	0.800	0.640	0.800	0.711 0.751	0.222 0.337	0.500	0.416
3-Layer CNN	P-CGR Static Random RCGR	0.800 0.835 0.800 0.821	0.640 0.853 0.640 0.807	0.800 0.835 0.800 0.821	0.711 0.810 0.711 0.778	0.222 0.391 0.222 0.376	0.500 0.651 0.500 0.583	0.490 0.557 0.391 0.529
	S-P-CGR S-Static S-Random S-RCGR	0.838 0.800 0.800 0.807	0.821 0.640 0.640 0.690	0.838 0.800 0.800 0.807	0.806 0.711 0.711 0.730	0.370 0.222 0.222 0.254	0.657 0.500 0.500 0.518	0.462 0.392 0.436 0.389
4-Layer CNN	P-CGR Static Random RCGR	0.831 0.800 0.800 0.800	0.735 0.640 0.640 0.640	0.831 0.800 0.800 0.800	0.779 0.711 0.711 0.711	0.329 0.222 0.222 0.222	0.586 0.500 0.500 0.500	0.498 0.512 0.435 0.536
	S-P-CGR S-Static S-Random S-RCGR	0.800 0.800 0.800 0.800	0.640 0.640 0.640 0.640	0.800 0.800 0.800 0.800 0.800	0.711 0.711 0.711 0.711	0.222 0.222 0.222 0.222	0.500 0.500 0.500 0.500	0.563 0.474 0.460 0.506
RESNET50 Pre- Trained Model	P-CGR Static Random RCGR	0.800 0.800 0.800 0.800	0.642 0.640 0.640 0.640	0.800 0.800 0.800 0.800	0.712 0.711 0.711 0.711	0.222 0.222 0.222 0.222	0.501 0.500 0.500 0.500	1.317 1.159 1.387 1.374
	S-P-CGR S-Static S-Random S-RCGR	0.828 0.828 0.800 0.800	0.801 0.768 0.640 0.640	0.828 0.828 0.800 0.800	0.791 0.783 0.711 0.711	0.357 0.369 0.222 0.222	0.633 0.585 0.500 0.500	1.043 1.273 1.170 1.181
VGG-19 Pre- Trained Model	P-CGR Static Random RCGR	0.803 0.824 0.800 0.800	0.684 0.713 0.640 0.640	0.803 0.824 0.800 0.800	0.720 0.761 0.711 0.711	0.243 0.323 0.222 0.222	0.509 0.565 0.500 0.500	1.189 1.153 1.054 1.06
	S-P-CGR S-Static S-Random S-RCGR	0.817 0.828 0.800 0.800	0.713 0.737 0.640 0.640	0.817 0.828 0.800 0.800	0.761 0.779 0.711 0.711	0.318 0.353 0.222 0.222	0.576 0.616 0.500 0.500	1.185 1.573 1.377 1.430

- This study proposed a new direction for ACP sequence classification by converting those sequences to images and applying DL classification models.
- In the future, can further investigate the potential of this method in other applications, such as predicting protein functionality or disease diagnosis, etc.

[1] H. F. Löchel, D. Eger, T. Sperlea, D. Heider, Deep learning on chaos game representation for proteins, Bioinformatics 36 (1) (2020) 272–279

[2] K. Kuzmin, et al., Machine learning methods accurately predict host specificity of coronaviruses based on spike sequences alone, Biochemical and Biophysical Research Communications 533 (3) (2020) 553–558

[3] J. Shen, Y. Qu, W. Zhang, Y. Yu, Wasserstein distance guided representation learning for domain adaptation, in: AAAI conference on artificial intelligence, 2018

[4] S. Ali, M. Patterson, Spike2vec: An effi cient and scalable embedding approach for covid-19 spike sequences, in: International Conference on Big Data (Big Data), 2021, pp. 1533–1540.