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Introduction

Predicting binding sites and studying DNA-protein interactions is essential. They are
critical for processes like gene expression, DNA repair, and signal transduction.

Has applications in drug discovery, gene regulation, and disease prediction.

As high-throughput sequencing advances, there is a need for computational models to
predict binding interactions between DNA sequences and proteins.

Deep learning models are becoming more popular and have proven to be effective in
capturing complex relationships in biological data.

CNNs (Convolutional Neural Networks) & RNNs (Recurrent Neural Networks) are being
used for DNA-protein binding predictions.
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Traditional Methods for DNA-Protein Binding Prediction

Sequence analysis tools like MEME (Multiple Em for Motif Elicitation) [1], Gibbs Motif
Sampler [2] are used to identify DNA motifs - likely binding sites for specific proteins.

Tools like TRANSFAC [3] and JASPAR [4] provide databases of known transcription
factor binding motifs.

Position Weight Matrices (PWMs): Predict binding sites based on nucleotide frequency.

ChIP: Experimental method to identify protein-bound DNA sequences
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Challenges with existing methods?

Struggle to capture complex sequence patterns

Expensive and requires specialized equipment, reagents, and expertise.

Limited sensitivity to weak/transient interactions

Less specificity and difficulty in identifying novel binding partners

False positives/negatives in predictions

Existing Deep learning models are more effective in capturing complex relationships in
biological data but have a few limitations

• Overlook high-order correlations between nucleotides
• Fixed motif length for binding site prediction
• Miss potential interactions due to simplified models
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What we propose?

We propose DeepPWM-BindingNet, which is a novel deep-learning (DL) architecture for
DNA-protein binding prediction.

Combines DNA sequence information, protein structures, and Position Weight Matrices
(PWMs). PWMs represent binding preferences at different positions in DNA sequences.

Integration of PWM-derived features with DL enhances accuracy and interpretability.

Our Contribution:

We integrate PWM-derived features with deep learning to improve accuracy. PWMs
capture empirical data on protein-DNA binding preferences at different positions.

Hierarchical feature extraction is made possible by utilizing CNNs and RNNs to extract
local and global features from sequences.

Attention Mechanism enhances focus on critical regions within DNA sequences to
improve prediction.
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Core Components

What are PWMs?

Position Weight Matrices (PWMs) are used to encode the binding preferences of proteins
at various positions in a DNA sequence. These matrices capture empirical data and
provide valuable context for DNA-protein interactions.

Hierarchical Feature Extraction - CNNs + RNNs Architecture:

CNNs (Convolutional Neural Networks): Capture local sequence patterns and motifs.

RNNs (Recurrent Neural Networks): Capture global dependencies and long-range
interactions between DNA and protein structures.

Attention weights are applied to important sequence segments, allowing the model to prioritize
regions likely to interact with the protein.

7 / 22



DeepPWM Architecture

Convolutional Layers: 1D convolutions capture local patterns in DNA/protein sequences
with varying kernel sizes.

Max-Pooling Layers: Down-sample feature maps to retain the important information.

Bidirectional LSTM Layer: Captures sequential dependencies and long-range interactions,
considering both past and future contexts.

Attention Mechanism: Focuses on the most informative parts of the sequence.

Global Average Pooling: Reduces spatial dimensions while retaining key features from the
attention-weighted LSTM output.

Dense Layers with Regularization: Extracts high-level features using ReLU activation and
L2 regularization.

Output Layer: Softmax activation for classification into binding/non-binding classes.
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Model Training

We train the deep learning model using the prepared dataset with the following configurations:

Loss Function: Binary cross-entropy loss [5] is used for the classification (see
Equation 1).

Optimizer: We use the Adam optimizer to update model weights during training.

Callbacks: Callbacks such as learning rate reduction and early stopping are employed to
optimize training and prevent overfitting.

Batch Size and Epochs: Training is performed in mini-batches with a specified batch
size, and the process is repeated for a predefined number of epochs.

Loss = − 1

N

N∑
i=1

[yi log(pi ) + (1− yi ) log(1− pi )] (1)

where y is the class label and p is the probability for prediction.
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Baselines

MLapSVM [6] :
• This method combines features from protein sequences—pseudo-position specific scoring

matrix (PsePSSM), global encoding (GE), and normalized Moreau–Broto autocorrelation
(NMBAC)—and uses a novel edge weight calculation.

• The use of multiple Laplacian regularizations creates a robust multigraph model that is less
sensitive to neighborhood size.

LapSVM [7] :
• A semi-supervised learning method for classification that applies manifold regularization to

traditional SVM.
• They use the same features as MLapSVM—PsePSSM, global encoding (GE), NMBAC, and

their concatenation—to create embeddings for LapSVM input.
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Baselines

SeqVec [8] :
• An ELMo-based method for processing input sequences.
• It begins by padding sequences and using character convolutions to map amino acids to a

fixed-length latent space.
• A bidirectional LSTM layer adds context, while another LSTM predicts the next word. Both

passes are independently optimized during training.

PDBP-Fusion [9]: The model combines CNNs for local feature extraction and Bi-LSTMs
for capturing long-term dependencies in DNA sequences

• Local Feature Learning: A CNN layer detects functional domains in the protein sequences.
• Long-Term Context Learning: A Bi-LSTM layer captures long-term sequence dependencies.
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Dataset

We use the following 4 DNA-binding and non-binding protein sequences datasets.

Datasets
Total Samples Length Statistics

Negative Positive Total Min Max Mean

PDB14189 7060 7129 14819 51 4911 425.313
PDB2272 1119 1153 2272 51 5183 459.907
PDB1075 550 525 1075 51 1323 240.213
PDB186 93 93 186 64 1323 264.693
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Results for for PDB14189 Dataset

Method Model Acc. ↑ Prec. ↑ NPV ↑ Sensitivity ↑ Specificity ↑ MCC ↑ F1 ↑ ROC-AUC ↑ ROC-Pr ↑

Local
Behavior
Similarity
(LapSVM) [7]

GE 85.52 ± 0.20 83.83 ± 0.24 87.42 ± 0.75 88.19 ± 0.87 82.82 ± 0.47 71.13 ± 0.46 85.95 ± 0.29 92.85 ± 0.20 90.80 ± 0.19
NMBAC 89.70 ± 0.01 85.29 ± 0.03 95.45 ± 0.03 96.07 ± 0.03 83.27 ± 0.04 80.04 ± 0.01 90.36 ± 0.01 95.93 ± 0.05 94.90 ± 0.04
MCD 74.84 ± 0.29 73.48 ± 0.63 76.49 ± 1.49 78.16 ± 2.34 71.49 ± 1.77 49.81 ± 0.71 75.72 ± 0.76 82.45 ± 0.13 80.67 ± 0.02
PSSM 76.88 ± 0.83 71.91 ± 1.52 85.19 ± 1.13 88.76 ± 1.56 64.89 ± 3.24 55.34 ± 1.06 79.42 ± 0.30 86.42 ± 0.09 84.50 ± 0.50

Combined 74.00 ± 0.08 71.38 ± 0.05 77.43 ± 0.12 80.54 ± 0.13 67.39 ± 0.03 48.37 ± 0.17 75.69 ± 0.09 82.11 ± 0.17 81.98 ± 0.07

Local
Behavior
Similarity
(MLapSVM) [6]

GE 74.64 ± 0.40 72.57 ± 0.76 77.19 ± 0.28 79.63 ± 0.66 69.59 ± 1.38 49.49 ± 0.73 75.93 ± 0.20 82.39 ± 0.40 82.26 ± 0.66
NMBAC 74.07 ± 0.71 67.12 ± 0.61 91.14 ± 1.36 94.88 ± 0.88 53.06 ± 1.31 52.85 ± 1.47 78.62 ± 0.55 87.08 ± 0.40 85.20 ± 0.42
MCD 76.99 ± 0.83 77.22 ± 0.36 76.80 ± 1.48 76.88 ± 2.13 77.10 ± 0.73 54.00 ± 1.62 77.04 ± 1.14 84.40 ± 0.75 82.72 ± 0.94
PSSM 91.27 ± 0.33 88.11 ± 0.65 95.07 ± 0.58 95.53 ± 0.58 86.97 ± 0.85 82.83 ± 0.62 91.66 ± 0.29 96.50 ± 0.40 95.57 ± 0.72

Combined 87.39 ± 0.50 85.71 ± 0.84 89.29 ± 0.70 89.91 ± 0.79 84.84 ± 1.08 74.88 ± 0.99 87.75 ± 0.46 93.93 ± 0.53 92.05 ± 1.06

SeqVec [8]

SVM 71.45 ± 0.01 71.51 ± 0.01 71.74 ± 0.01 72.31 ± 0.01 69.12 ± 0.02 42.42 ± 0.01 71.17 ± 0.01 71.81 ± 0.01 67.62 ± 0.01
NB 55.11 ± 0.01 65.41 ± 0.02 78.45 ± 0.03 96.21 ± 0.01 13.90 ± 0.01 17.87 ± 0.02 45.14 ± 0.01 55.46 ± 0.00 52.85 ± 0.00
MLP 74.43 ± 0.01 74.56 ± 0.01 74.38 ± 0.02 74.12 ± 0.03 75.66 ± 0.01 48.97 ± 0.01 74.32 ± 0.01 74.66 ± 0.01 69.32 ± 0.01
KNN 72.57 ± 0.00 72.62 ± 0.00 72.88 ± 0.01 71.92 ± 0.01 73.77 ± 0.01 44.16 ± 0.01 72.73 ± 0.00 72.54 ± 0.00 69.51 ± 0.01
RF 76.75 ± 0.00 76.74 ± 0.00 77.94 ± 0.00 78.17 ± 0.01 73.65 ± 0.01 52.31 ± 0.01 76.65 ± 0.00 76.11 ± 0.00 68.32 ± 0.01
LR 72.54 ± 0.00 72.76 ± 0.00 73.99 ± 0.01 74.14 ± 0.01 70.11 ± 0.01 44.84 ± 0.01 72.95 ± 0.00 72.81 ± 0.00 67.56 ± 0.01
DT 65.54 ± 0.00 65.11 ± 0.00 65.84 ± 0.01 64.33 ± 0.01 66.74 ± 0.01 31.69 ± 0.00 65.57 ± 0.00 65.30 ± 0.00 67.56 ± 0.00

PDBP-
Fusion [9]

2 Layer CNN (OH) 80.34 ± 0.89 81.64 ± 1.89 79.46 ± 2.93 78.75 ± 4.55 81.95 ± 3.15 60.90 ± 1.64 80.04 ± 1.62 88.74 ± 0.50 86.69 ± 0.85
3 Layer CNN (OH) 81.64 ± 1.38 80.98 ± 3.38 83.41 ± 4.68 83.61 ± 7.01 79.66 ± 5.80 63.82 ± 2.28 81.95 ± 2.35 90.01 ± 0.63 88.57 ± 0.88
Fusion (Embed) 53.35 ± 3.07 64.24 ± 8.87 41.52 ± 21.24 38.89 ± 37.31 67.95 ± 39.57 9.72 ± 7.38 36.27 ± 22.55 56.74 ± 7.05 56.20 ± 5.41
Fusion (OH) 80.49 ± 1.61 77.66 ± 4.03 85.35 ± 4.15 86.79 ± 5.37 74.13 ± 7.67 61.94 ± 2.25 81.72 ± 1.10 89.25 ± 0.72 87.66 ± 0.98

DeepPWM-
BindingNet

- 79.80 ± 0.94 77.53 ± 1.65 82.69 ± 1.75 84.32 ± 2.29 75.24 ± 2.71 59.89 ± 1.87 80.74 ± 0.90 87.69 ± 0.88 86.44 ± 0.94

Results for different embedding methods on SARS-CoV-2 Variant Dataset.

Although it is not better the advantage of our proposed method is that it
provides interpretability due to the inclusion of the attention mechanism.
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Results for PDB2272 Dataset

Method Model Acc. ↑ Prec. ↑ NPV ↑ Sensitivity ↑ Specificity ↑ MCC ↑ F1 ↑ ROC-AUC ↑ ROC-Pr ↑

Local
Behavior
Similarity
(LapSVM) [7]

GE 55.24 ± 1.47 53.15 ± 0.82 96.44 ± 4.36 99.74 ± 0.35 9.38 ± 2.75 21.08 ± 4.56 69.35 ± 0.74 74.11 ± 2.38 70.59 ± 1.94
NMBAC 51.36 ± 0.33 51.07 ± 0.18 80.95 ± 18.87 99.57 ± 0.39 1.70 ± 0.52 6.29 ± 3.33 67.51 ± 0.20 74.20 ± 2.18 71.91 ± 1.85
MCD 60.91 ± 2.30 58.30 ± 1.89 67.36 ± 2.97 81.35 ± 2.30 39.85 ± 5.32 23.31 ± 4.66 67.89 ± 1.39 65.04 ± 2.68 63.52 ± 3.62
PSSM 67.25 ± 2.25 61.60 ± 1.64 87.09 ± 3.98 94.36 ± 1.64 39.32 ± 3.83 40.48 ± 4.79 74.53 ± 1.50 83.82 ± 2.87 84.61 ± 2.88

Combined 61.97 ± 2.50 57.59 ± 1.72 85.41 ± 3.86 95.58 ± 0.92 27.35 ± 4.73 31.34 ± 5.26 71.86 ± 1.44 80.64 ± 2.80 81.19 ± 2.28

Local
Behavior
Similarity
(MLapSVM) [6]

GE 55.24 ± 1.48 53.16 ± 0.82 95.57 ± 3.98 99.65 ± 0.32 9.47 ± 2.79 20.89 ± 4.55 69.33 ± 0.74 74.10 ± 2.38 70.58 ± 1.94
NMBAC 51.32 ± 0.32 51.05 ± 0.18 80.95 ± 18.87 99.57 ± 0.39 1.61 ± 0.54 6.03 ± 3.11 67.49 ± 0.19 74.21 ± 2.18 71.91 ± 1.86
MCD 60.96 ± 2.26 58.32 ± 1.86 67.47 ± 2.90 81.44 ± 2.32 39.85 ± 5.32 23.42 ± 4.57 67.93 ± 1.35 65.04 ± 2.68 63.52 ± 3.62
PSSM 67.30 ± 2.36 61.67 ± 1.75 86.80 ± 3.78 94.19 ± 1.56 39.59 ± 4.13 40.44 ± 4.89 74.53 ± 1.55 83.83 ± 2.86 84.61 ± 2.88

Combined 62.06 ± 2.56 57.65 ± 1.77 85.48 ± 3.84 95.58 ± 0.92 27.52 ± 4.88 31.51 ± 5.34 71.91 ± 1.47 80.64 ± 2.80 81.18 ± 2.28

SeqVec [8]

SVM 51.42 ± 0.03 51.45 ± 0.03 51.65 ± 0.03 63.78 ± 0.12 40.12 ± 0.17 03.34 ± 0.06 50.44 ± 0.05 51.12 ± 0.03 60.87 ± 0.05
NB 56.56 ± 0.01 59.43 ± 0.01 53.67 ± 0.01 26.63 ± 0.02 85.67 ± 0.01 14.45 ± 0.02 51.56 ± 0.01 56.11 ± 0.01 75.56 ± 0.01
MLP 57.45 ± 0.01 57.41 ± 0.01 56.86 ± 0.01 53.22 ± 0.04 61.56 ± 0.03 14.33 ± 0.02 57.56 ± 0.01 57.12 ± 0.01 66,87 ± 0.01
KNN 57.86 ± 0.01 57.54 ± 0.01 56.32 ± 0.02 49.75 ± 0.03 64.77 ± 0.03 13.43 ± 0.02 56.43 ± 0.01 57.36 ± 0.01 67.57 ± 0.01
RF 61.24 ± 0.01 62.52 ± 0.01 63.41 ± 0.03 68.86 ± 0.03 55.44 ± 0.03 23.57 ± 0.03 61.17 ± 0.01 61.47 ± 0.01 63.13 ± 0.02
LR 58.77 ± 0.01 59.42 ± 0.01 56.26 ± 0.01 44.37 ± 0.02 72.22 ± 0.02 17.90 ± 0.03 57.45 ± 0.01 58.36 ± 0.01 70.27 ± 0.02
DT 56.22 ± 0.03 56.74 ± 0.03 56.31 ± 0.03 58.67 ± 0.03 55.78 ± 0.05 12.67 ± 0.06 56.44 ± 0.03 56.68 ± 0.03 64.24 ± 0.02

PDBP-
Fusion [9]

2 Layer CNN (OH) 60.78 ± 6.07 61.33 ± 8.35 75.99 ± 22.07 79.86 ± 20.72 41.12 ± 31.55 26.27 ± 9.57 66.65 ± 4.96 74.29 ± 2.45 72.06 ± 3.00
3 Layer CNN (OH) 54.60 ± 4.75 53.56 ± 5.27 91.49 ± 21.00 97.80 ± 8.80 10.09 ± 17.33 16.95 ± 9.96 68.61 ± 1.94 77.78 ± 2.48 75.48 ± 3.70
Fusion (Embed) 51.02 ± 2.81 45.20 ± 28.67 35.69 ± 22.11 37.18 ± 44.41 65.29 ± 45.91 3.65 ± 8.11 28.89 ± 29.44 52.11 ± 6.75 54.46 ± 5.53
Fusion (OH) 69.44 ± 3.32 70.15 ± 3.94 70.74 ± 6.79 70.70 ± 13.00 68.12 ± 10.03 39.82 ± 6.31 69.54 ± 6.30 78.11 ± 2.90 76.11 ± 3.61

DeepPWM-
BindingNet

- 69.40 ± 4.50 66.86 ± 4.05 71.50 ± 15.06 80.50 ± 5.88 57.96 ± 12.75 39.38 ± 9.43 72.81 ± 2.57 75.88 ± 3.37 73.62 ± 3.35

Results for different embedding methods on SARS-CoV-2 Variant Dataset.

We can observe that in terms of average accuracy, the proposed method
shows value in the top 5% accuracy.
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Results for PDB1075 Dataset

Method Model Acc. ↑ Prec. ↑ NPV ↑ Sensitivity ↑ Specificity ↑ MCC ↑ F1 ↑ ROC-AUC ↑ ROC-Pr ↑

Local
Behavior
Similarity
(LapSVM) [7]

GE 51.16 ± 0.00 0.00 ± 0.00 51.16 ± 0.00 0.00 ± 0.00 100.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 77.50 ± 2.46 74.97 ± 1.55
NMBAC 51.16 ± 0.00 0.00 ± 0.00 51.16 ± 0.00 0.00 ± 0.00 100.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 77.11 ± 4.24 74.41 ± 4.08
MCD 61.21 ± 1.37 81.29 ± 5.55 57.41 ± 0.89 27.05 ± 3.16 93.82 ± 2.47 28.35 ± 3.58 40.41 ± 3.51 76.20 ± 1.78 73.95 ± 2.87
PSSM 75.07 ± 4.55 80.06 ± 5.50 71.84 ± 4.08 65.14 ± 5.83 84.55 ± 4.11 50.78 ± 9.23 71.79 ± 5.49 83.06 ± 3.58 79.57 ± 4.49

Combined 70.70 ± 3.87 78.79 ± 5.30 66.70 ± 3.43 54.86 ± 6.64 85.82 ± 4.13 43.00 ± 7.84 64.48 ± 5.62 80.55 ± 3.34 76.41 ± 4.46

Local
Behavior
Similarity
(MLapSVM) [6]

GE 51.16 ± 0.00 0.00 ± 0.00 51.16 ± 0.00 0.00 ± 0.00 100.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 77.49 ± 2.45 74.98 ± 1.53
NMBAC 51.07 ± 0.19 0.00 ± 0.00 51.12 ± 0.09 0.00 ± 0.00 99.82 ± 0.36 -1.34 ± 2.67 0.00 ± 0.00 77.11 ± 4.24 74.41 ± 4.08
MCD 61.12 ± 1.23 81.21 ± 5.48 57.34 ± 0.80 26.86 ± 3.04 93.82 ± 2.47 28.17 ± 3.34 40.18 ± 3.30 76.21 ± 1.77 73.94 ± 2.87
PSSM 74.88 ± 4.44 79.98 ± 5.45 71.61 ± 3.97 64.76 ± 5.68 84.55 ± 4.11 50.44 ± 9.02 71.52 ± 5.35 83.07 ± 3.60 79.58 ± 4.50

Combined 70.42 ± 3.49 78.98 ± 5.18 66.29 ± 2.99 53.90 ± 5.83 86.18 ± 4.04 42.58 ± 7.17 63.90 ± 5.00 80.56 ± 3.33 76.42 ± 4.45

SeqVec [8]

SVM 48.56 ± 0.05 48.43 ± 0.05 50.26 ± 0.05 37.23 ± 0.11 59.98 ± 0.05 -4.11 ± 0.10 47.12 ± 0.05 48.45 ± 0.05 63.32 ± 0.02
NB 57.45 ± 0.04 60.67 ± 0.04 66.43 ± 0.04 80.22 ± 0.03 36.56 ± 0.06 18.88 ± 0.07 55.26 ± 0.05 58.68 ± 0.03 56.89 ± 0.03
MLP 52.87 ± 0.02 52.89 ± 0.03 54.55 ± 0.04 55.93 ± 0.05 50.72 ± 0.05 4.45 ± 0.05 52.57 ± 0.02 52.32 ± 0.03 61.45 ± 0.02
KNN 58.56 ± 0.02 58.67 ± 0.03 60.66 ± 0.03 62.35 ± 0.06 54.88 ± 0.03 16.43 ± 0.05 58.32 ± 0.02 58.56 ± 0.02 62.22 ± 0.02
RF 61.78 ± 0.02 61.43 ± 0.02 61.22 ± 0.03 55.56 ± 0.04 67.67 ± 0.03 22.78 ± 0.04 61.32 ± 0.02 61.45 ± 0.02 66.57 ± 0.02
LR 53.32 ± 0.04 53.45 ± 0.04 56.38 ± 0.05 62.92 ± 0.06 44.58 ± 0.02 6.59 ± 0.08 52.26 ± 0.03 53.43 ± 0.04 59.44 ± 0.01
DT 57.67 ± 0.03 57.55 ± 0.03 59.43 ± 0.02 57.81 ± 0.04 57.99 ± 0.06 15.64 ± 0.06 57.32 ± 0.03 57.67 ± 0.03 63.28 ± 0.03

PDBP-
Fusion [9]

2 Layer CNN (OH) 68.65 ± 2.86 66.72 ± 5.99 75.58 ± 8.05 75.73 ± 15.14 61.96 ± 15.27 39.85 ± 5.06 69.45 ± 5.47 78.08 ± 2.41 74.29 ± 2.97
3 Layer CNN (OH) 68.33 ± 3.69 62.96 ± 4.57 82.47 ± 5.29 87.64 ± 7.20 50.15 ± 12.33 41.27 ± 5.33 72.87 ± 1.94 79.25 ± 1.78 76.38 ± 2.72
Fusion (Embed) 51.10 ± 3.27 28.06 ± 28.71 40.51 ± 23.96 45.46 ± 47.69 56.40 ± 46.73 0.63 ± 8.38 31.31 ± 32.45 68.03 ± 5.07 66.48 ± 5.64
Fusion (OH) 65.04 ± 5.67 59.57 ± 4.87 86.05 ± 6.42 92.01 ± 6.47 39.64 ± 14.98 37.15 ± 9.32 71.96 ± 2.82 80.09 ± 1.67 76.92 ± 3.31

DeepPWM-
BindingNet

- 72.05 ± 2.56 69.37 ± 3.48 75.66 ± 3.54 76.37 ± 5.43 68.00 ± 6.19 44.70 ± 5.03 72.52 ± 2.57 78.45 ± 2.70 74.13 ± 5.23

The accuracy is comparable and the F1 score is almost the same as the best.
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Results for PDB186 Dataset

Method Model Acc. ↑ Prec. ↑ NPV ↑ Sensitivity ↑ Specificity ↑ MCC ↑ F1 ↑ ROC-AUC ↑ ROC-Pr ↑

Local
Behavior
Similarity
(LapSVM) [7]

GE 52.70 ± 5.92 40.71 ± 21.36 56.03 ± 8.71 54.80 ± 36.51 50.99 ± 30.86 6.36 ± 12.92 45.22 ± 26.86 61.03 ± 8.05 59.99 ± 6.81
NMBAC 49.47 ± 1.60 0.00 ± 0.00 49.73 ± 1.32 0.00 ± 0.00 98.95 ± 2.11 -3.29 ± 6.58 0.00 ± 0.00 68.62 ± 6.32 65.23 ± 6.79
MCD 53.23 ± 3.15 55.25 ± 7.51 52.24 ± 1.82 34.15 ± 10.88 71.99 ± 11.22 6.77 ± 8.10 41.21 ± 9.53 57.49 ± 4.36 60.72 ± 5.85
PSSM 66.15 ± 7.08 66.08 ± 9.23 67.61 ± 6.23 69.71 ± 9.35 62.40 ± 14.50 32.87 ± 14.11 67.31 ± 6.61 70.15 ± 8.44 71.77 ± 6.48

Combined 65.59 ±
11.00

63.71 ± 11.10 69.53 ± 12.18 73.98 ± 13.07 57.08 ± 14.29 32.09 ± 22.01 68.16 ± 10.85 67.32 ± 8.77 67.99 ± 5.46

Local
Behavior
Similarity
(MLapSVM) [6]

GE 52.70 ± 5.92 40.71 ± 21.36 56.03 ± 8.71 54.80 ± 36.51 50.99 ± 30.86 6.36 ± 12.92 45.22 ± 26.86 61.09 ± 8.03 60.10 ± 6.72
NMBAC 49.47 ± 1.60 0.00 ± 0.00 49.73 ± 1.32 0.00 ± 0.00 98.95 ± 2.11 -3.29 ± 6.58 0.00 ± 0.00 68.68 ± 6.29 65.26 ± 6.78
MCD 53.23 ± 3.15 55.25 ± 7.51 52.24 ± 1.82 34.15 ± 10.88 71.99 ± 11.22 6.77 ± 8.10 41.21 ± 9.53 57.43 ± 4.33 60.60 ± 5.74
PSSM 65.60 ± 6.40 65.80 ± 8.81 66.98 ± 5.83 68.60 ± 9.96 62.40 ± 14.50 31.85 ± 12.83 66.51 ± 6.13 70.10 ± 8.36 71.72 ± 6.41

Combined 65.59 ±
11.00

63.71 ± 11.10 69.53 ± 12.18 73.98 ± 13.07 57.08 ± 14.29 32.09 ± 22.01 68.16 ± 10.85 67.31 ± 8.78 67.98 ± 5.44

SeqVec [8]

SVM 50.11 ± 0.04 49.25 ± 0.05 48.32 ± 0.11 53.91 ± 0.12 46.45 ± 0.20 -1.54 ± 0.11 49.57 ± 0.05 50.43 ± 0.05 61.56 ± 0.04
NB 60.43 ± 0.05 61.61 ± 0.04 62.67 ± 0.04 65.17 ± 0.08 56.57 ± 0.11 21.52 ± 0.09 60.12 ± 0.05 60.76 ± 0.05 63.43 ± 0.04
MLP 50.32 ± 0.06 51.64 ± 0.06 52.87 ± 0.09 54.43 ± 0.16 48.32 ± 0.13 2.43 ± 0.12 50.41 ± 0.06 51.89 ± 0.06 61.65 ± 0.05
KNN 56.24 ± 0.06 58.46 ± 0.06 57.67 ± 0.09 52.55 ± 0.15 63.57 ± 0.17 15.13 ± 0.12 56.92 ± 0.07 57.59 ± 0.06 66.26 ± 0.08
RF 53.35 ± 0.04 54.15 ± 0.03 54.23 ± 0.06 51.15 ± 0.13 55.73 ± 0.12 7.91 ± 0.07 52.35 ± 0.04 53.91 ± 0.03 63.55 ± 0.05
LR 51.46 ± 0.08 52.32 ± 0.08 53.57 ± 0.11 52.68 ± 0.12 51.43 ± 0.07 3.57 ± 0.16 51.79 ± 0.08 52.32 ± 0.08 62.46 ± 0.02
DT 49.45 ± 0.02 50.43 ± 0.03 50.42 ± 0.04 48.56 ± 0.14 51.78 ± 0.14 -1.48 ± 0.06 48.36 ± 0.02 50.78 ± 0.03 62.47 ± 0.06

PDBP-
Fusion [9]

2 Layer CNN (OH) 56.20 ± 6.36 55.71 ± 5.94 54.67 ± 30.92 79.31 ± 22.77 33.54 ± 27.62 15.38 ± 13.17 62.89 ± 10.17 65.30 ± 5.84 67.28 ± 5.55
3 Layer CNN (OH) 51.83 ± 4.26 51.20 ± 3.14 22.07 ± 30.17 95.18 ± 8.03 8.34 ± 14.15 4.20 ± 9.43 66.35 ± 2.67 64.12 ± 5.21 64.52 ± 5.35
Fusion (Embed) 50.86 ± 1.83 40.33 ± 28.42 22.27 ± 28.85 64.43 ± 47.44 36.63 ± 47.62 2.50 ± 7.05 43.78 ± 31.24 65.37 ± 7.42 67.24 ± 5.53
Fusion (OH) 53.55 ± 6.67 52.70 ± 5.40 24.46 ± 33.68 93.31 ± 10.97 13.81 ± 20.83 8.01 ± 14.64 66.75 ± 3.58 67.31 ± 5.57 69.13 ± 4.90

DeepPWM-
BindingNet

- 49.89 ± 2.81 50.02 ± 2.22 6.55 ± 17.86 97.61 ± 5.05 2.20 ± 7.83 -1.58 ± 7.77 66.05 ± 1.93 60.00 ± 11.82 64.34 ± 8.68

The proposed method shows a near-perfect score for the sensitivity metric.
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Results Summary

While our method may not always surpass baselines in raw metrics, its unique strengths
offer significant value.

Advantages:
• Resource Efficiency, Interpretability, and Adaptability make it a practical addition to the field.
• Complements existing techniques (e.g., PWM), enhancing the overall toolkit for researchers

Provide strong potential for improved real-world applicability and ethical considerations.

Opens new avenues for exploration and positions itself as a solid foundation for future
research.
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Conclusion and Future Work

Conclusion

DeepPWM-BindingNet combines deep learning with PWM-derived features for improved
DNA-protein binding predictions.

The use of hierarchical feature extraction and an attention mechanism enhances both
predictive performance and model interpretability.

Future Work

Explore Transfer Learning: Investigating novel deep learning techniques to improve
efficiency.

Broader Applications: Testing the model on other biological tasks to assess
its generalizability.
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Thank You



Questions !!
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