mtPGS: Multi-Trait Assisted Polygenic Scores

Leveraging Correlated Traits for Accurate Genetic Prediction

Chang Xu, Santhi K. Ganesh, Xiang Zhou University of Michigan School of Public Health

June 10, 2025

- 1. Motivation & Problem Statement
- 2. Technical Challenges in Current Methods
- 3. mtPGS Methodology & Statistical Framework
- 4. Algorithmic Implementation & Computational Complexity
- 5. Experimental Validation & Results
- 6. Discussion & Future Directions

Motivation & Problem Statement Limitations of Current Polygenic Score Construction

Current Challenges:

- SNP effect size estimation suffers from noise
- Univariate methods ignore trait correlations
- Existing multivariate methods have limitations:
 - Inflexible modeling assumptions
 - Ignore environmental correlations
 - Computationally intensive (MCMC)

Key Insight:

- Genetic correlations among traits contain information
- Environmental correlations due to sample overlap
- Need a flexible, scalable framework Chang Xu, Santhi K. Ganesh, Xiang Zhou

mtPGS: Multi-Trait Assisted PRS 3/18

Technical Challenges in Multivariate PGS Methods Limitations of Existing Approaches

Method	Input	Architecture Model	Key Limitations
wMT-SBLUP	Summary	Multivariate Normal	Simple covariance structure
MTAG	Summary	Linear Combination	No environmental correlation
XPXP	Summary	Cross-population	Limited to population differences
BVR	Individual	Bivariate Ridge	Requires individual data
MTGBLUP	Individual	Multivariate BLUP	Not scalable to biobanks

Fundamental Issues:

- 1. Inflexible Effect Size Distribution: Single multivariate normal cannot capture complex genetic architectures
- 2. Environmental Correlation Ignored: Sample overlap creates dependencies not modeled
- Computational Scalability: MCMC methods don't scale to biobank data (n > 500K)
- 4. Over-shrinkage Problem: Large effects get inappropriately shrunk toward zero Chang Xu, Santhi K. Ganesh, Xiang Zhou mtPGS: Multi-Trait Assisted PRS 4/18

mtPGS Statistical Framework

Flexible Bivariate Modeling with Environmental Correlations

Regression Model Setup: For target trait
$$y_0$$
 and relevant trait y_m : $y_0^* = X_0^* \beta_0 + \epsilon_0^*$ (non-overlapping individuals)(1) $y_m^* = X_m^* \beta_m + \epsilon_m^*$ (non-overlapping individuals)(2) $[\tilde{y}_0, \tilde{y}_m] = \tilde{X}[\beta_0, \beta_m] + [\tilde{\epsilon}_0, \tilde{\epsilon}_m]$ (overlapping)(3)

Flexible SNP Effect Prior - Mixture of Bivariate Normals:

$$\begin{bmatrix} \beta_{0j} \\ \beta_{mj} \end{bmatrix} \sim \sum_{k=1}^{4} \pi_k \mathcal{BN}(\mathbf{0}, \mathbf{\Sigma}_k)$$

Four Component Mixture:

- π_{11} : Large effects on both traits
- π_{10} : Large on target, small on relevant
- π_{01} : Small on target, large on relevant
- π_{00} : Small effects on both traits

Covariance Structure:

$$\mathbf{\Sigma}_{k} = \begin{bmatrix} \sigma_{0l/s}^{2} & \rho_{g}\sigma_{0l/s}\sigma_{ml/s} \\ \rho_{g}\sigma_{0l/s}\sigma_{ml/s} & \sigma_{ml/s}^{2} \end{bmatrix}$$

l/s indicates large/small effect

mtPGS: Multi-Trait Assisted PRS 5/18

Chang Xu, Santhi K. Ganesh, Xiang Zhou

Environmental Correlation Modeling

Explicit Treatment of Sample Overlap Dependencies

Environmental Effect Model: For non-overlapping individuals: $\epsilon_{0i}^* \sim \mathcal{N}(0, \sigma_{0e}^2), \quad \epsilon_{mi}^* \sim \mathcal{N}(0, \sigma_{me}^2)$ For overlapping individuals: $\begin{bmatrix} \tilde{\epsilon}_{0i} \\ \tilde{\epsilon}_{mi} \end{bmatrix} \sim \mathcal{BN}(\mathbf{0}, \mathbf{V}_e)$ where $\mathbf{V}_{e} = \begin{bmatrix} \sigma_{0e}^{2} & \rho_{e}\sigma_{0e}\sigma_{me} \\ \rho_{e}\sigma_{0e}\sigma_{me} & \sigma_{me}^{2} \end{bmatrix}$ Target Overlap Relevant

 $\rho_{\rm e}$ models environmental correlation in overlap region

Chang Xu, Santhi K. Ganesh, Xiang Zhou

mtPGS: Multi-Trait Assisted PRS 6/18

Deterministic Inference Algorithm (1/2) Scalable Alternative to MCMC

Key Innovation: Replace 4^p dimensional MCMC search with deterministic approximation

GECKO Parameter Estimation:

- Heritability (*h*²): Method-of-moments estimator
- Genetic correlation (ρ_g): Cross-trait LD score regression
- Environmental correlation (ρ_e): Sample overlap-based estimation

Deterministic Inference Algorithm (2/2) Scalable Alternative to MCMC

Algorithm 1 mtPGS Deterministic Algorithm

- 1: Input: GWAS summary statistics, LD matrix ${\bm R}$
- 2: Estimate h^2 , ρ_g , ρ_e using GECKO
- 3: for each trait pair (target + relevant) do
- 4: Identify large-effect SNPs via C+T procedure:
- 5: Parameters: *p*-threshold $\in \{10^{-5}, 10^{-6}, 10^{-7}, 10^{-8}\}$
- 6: LD threshold $r^2 \in \{0.1, 0.2, 0.25\}$, window = 1000kb
- 7: Partition SNPs: $\boldsymbol{\beta} = [\boldsymbol{\beta}_l^T, \boldsymbol{\beta}_s^T]^T$
- 8: Solve linear system for $\hat{\beta}_{l}$, $\hat{\beta}_{s}$:

9:
$$\hat{\boldsymbol{\beta}} = (\mathbf{X}^T \boldsymbol{\Sigma}^{-1} \mathbf{X} + \mathbf{D}^{-1})^{-1} \hat{\mathbf{X}}^T \boldsymbol{\Sigma}^{-1} \mathbf{y}$$

10: Construct PGS: $s_m = \mathbf{x}^T \hat{\boldsymbol{\beta}}_0$

11: end for

- 12: Combine PGSs: $s = \sum_{m} w_m s_m$ (weights via cross-validation)
- 13: **Output:** Final polygenic score s

Analytical Solution Details

Closed-Form Expressions for Effect Size Estimation

Linear System Solution: $\hat{\beta} = (X^T \Sigma^{-1} X + D^{-1})^{-1} X^T \Sigma^{-1} y$ where:

- Σ: Phenotypic covariance matrix, D: Prior precision matrix (mixture-dependent)
- Analytical forms for large/small effect SNPs

Large Effect SNPs: $\begin{bmatrix} \hat{\beta}_{0l} \\ \hat{\beta}_{ml} \end{bmatrix} = \begin{bmatrix} \begin{pmatrix} n_{ms} \hat{\mathbf{v}}_e^{-1} + \begin{bmatrix} \hat{\sigma}_{0e}^{-2} n_b^* & 0 \\ 0 & \hat{\sigma}_{me}^{-2} n_m^* \end{bmatrix} \end{pmatrix} \otimes \mathbf{s}_{ll} \end{bmatrix}^{-1} \mathbf{z}_l$ Small Effect SNPs:

$$\begin{bmatrix} \hat{\boldsymbol{\beta}}_{0s} \\ \hat{\boldsymbol{\beta}}_{ms} \end{bmatrix} = \begin{bmatrix} 2(\hat{\boldsymbol{V}}_g \otimes \boldsymbol{I}_{\boldsymbol{\rho}_S})^{-1} + \begin{pmatrix} n_{ms}\hat{\boldsymbol{V}}_e^{-1} + \begin{bmatrix} \hat{\sigma}_{0e}^{-2}n_0^* & 0 \\ 0 & \hat{\sigma}_{me}^{-2}n_m^* \end{bmatrix} \end{pmatrix} \otimes \boldsymbol{S}_{ss} \end{bmatrix}^{-1} \boldsymbol{z}_s^{adj}$$

where:

• S_{II}, S_{ss} : LD matrices for large/small effect SNPs, z_I, z_s^{adj} : (Adjusted) Z-score vectors

•
$$\hat{\mathbf{V}}_{g} = \begin{bmatrix} \hat{\sigma}_{0s}^{2} & \hat{\rho}_{g}\hat{\sigma}_{0s}\hat{\sigma}_{ms}\\ \hat{\rho}_{g}\hat{\sigma}_{0s}\hat{\sigma}_{ms} & \hat{\sigma}_{ms}^{2} \end{bmatrix}$$
: Genetic covariance
• $\hat{\mathbf{V}}_{e} = \begin{bmatrix} \hat{\sigma}_{0e}^{2} & \hat{\rho}_{e}\hat{\sigma}_{0e}\hat{\sigma}_{me}\\ \hat{\rho}_{e}\hat{\sigma}_{0e}\hat{\sigma}_{me} & \hat{\sigma}_{me}^{2} \end{bmatrix}$: Environmental covariance

Chang Xu, Santhi K. Ganesh, Xiang Zhou

mtPGS: Multi-Trait Assisted PRS 9/18

Computational Optimizations Achieving Linear Scalability in SNP Number

1. Block-Diagonal LD Approximation:

 $\mathbf{R} \approx \mathsf{blockdiag}(\mathbf{R}_1, \mathbf{R}_2, \dots, \mathbf{R}_B)$

- Follow Berisa et al. LD block structure
- Reduces O(p³) to O(∑_b b³) operations
- Enables parallel computation across blocks
- 2. Woodbury Matrix Identity:

 $(\mathbf{A} + \mathbf{U}\mathbf{C}\mathbf{V})^{-1} = \mathbf{A}^{-1} - \mathbf{A}^{-1}\mathbf{U}(\mathbf{C}^{-1} + \mathbf{V}\mathbf{A}^{-1}\mathbf{U})^{-1}\mathbf{V}\mathbf{A}^{-1}$

- Transforms large matrix inversions
- $O(n^3) \rightarrow O(p^3)$ when $p \ll n$

Chang Xu, Santhi K. Ganesh, Xiang Zhou

- 3. Preconditioned Conjugate Gradient:
 - Solve $\mathbf{A}\mathbf{x} = \mathbf{b}$ iteratively
 - Avoid explicit matrix inversion
 - Convergence in $O(\sqrt{\kappa})$ iterations

Overall Complexity:

Operation	Complexity
LD block diagonal	O(p)
Effect estimation/block	$O(b^3)$
Combining across blocks	O(p)
Total	O (p)

Memory Requirements:

- LD matrix: O(p) sparse storage
- Intermediate matrices: O(Mp)
- Peak usage: ${\sim}8\text{GB}$ for 1M SNPs

mtPGS: Multi-Trait Assisted PRS10/18

Experimental Validation: Simulation Study (1/2)

Comprehensive Evaluation Across Genetic Architectures

Simulation Setup:

- n = 12,000 individuals, p = 100,000 SNPs from UK Biobank
- Three genetic architectures: Polygenic, Sparse, Hybrid
- Varying genetic correlation $\rho_g \in \{0.1, 0.3, 0.5, 0.7, 0.9\}$
- Environmental correlation $\rho_e \in \{0, 0.3, 0.6\}$
- Sample overlap patterns: Complete, Partial, No overlap

Experimental Validation: Simulation Study (2/2)

Comprehensive Evaluation Across Genetic Architectures

Genetic Architecture Details: Scenario I (Polygenic):

- All SNPs have non-zero effects
- $eta_j \sim \mathcal{BN}(\mathbf{0}, \mathbf{\Sigma}_g)$

Scenario II (Sparse):

- 1% SNPs have large effects
- 80% of causal SNPs correlated
- 20% trait-specific effects

Scenario III (Hybrid):

- Mixture of polygenic + sparse
- Models real trait architectures

Chang Xu, Santhi K. Ganesh, Xiang Zhou

Key Results:

- Average 3.65% accuracy gain
- Performance scales with ρ_g
- Robust across architectures
- Benefits increase with overlap mtPGS: Multi-Trait Assisted PRS12/18

UK Biobank Real Data Results 25 Traits Across Quantitative and Binary Phenotypes

Trait	mtPGS	Best Baseline	Gain (%)
Height	0.524	0.509 (PRS-CS)	2.9
BMĬ	0.134	0.131 (DBSLMM)	2.3
WHR	0.089	0.084 (PRS-CS)	6.0
SBP	0.091	0.086 (MegaPRS)	5.8
DBP	0.076	0.071 (PRS-CS)	7.0
HDL	0.201	0.131 (DBSLMM)	53.4
LDL	0.141	0.133 (PRS-CS)	6.0
тс	0.189	0.179 (PRS-CS)	5.6
ΤG	0.124	0.119 (MegaPRS)	4.2

Quantitative Traits (15 traits):

Binary Traits (10 traits):

Trait	mtPGS	Best Baseline	Gain (%)
CAD	0.032	0.031 (PRS-CS)	3.2
T2D	0.041	0.040 (DBSLMM)	2.5
Depression	0.022	0.021 (MegaPRS)	4.8
Asthma	0.018	0.017 (PRS-CS)	5.9

Chang Xu, Santhi K. Ganesh, Xiang Zhou

mtPGS: Multi-Trait Assisted PRS13/18

Performance Summary

Comprehensive Evaluation Across Real Data

Quantitative Traits:

- 13/15 traits show best performance
- Average 2.25% accuracy gain
- Up to **52.9%** improvement (HDL)
- Robust across diverse phenotypes

Binary Traits:

- 7/10 traits show best performance
- Average 0.89% accuracy gain
- Consistent improvements across disease types
- Robust to regression type differences

Chang Xu, Santhi K. Ganesh, Xiang Zhou

Performance Correlates With:

- Trait heritability (r = 0.87 0.98)
- Number of relevant correlated traits
- Strength of genetic correlations
- Sample overlap patterns

Key Finding

Performance gains are **systematic** and **predictable** based on trait characteristics

Method Comparison mtPGS vs State-of-the-Art Approaches

Method	Input	Multivariate	Key Limitation
mtPGS	Summary	\checkmark	None
DBSLMM	Summary	×	Univariate only
PRS-CS	Summary	×	MCMC computational cost
MegaPRS	Summary	×	Heritability estimation
wMT-SBLUP	Summary	\checkmark	Simple covariance structure
MTAG	Summary	\checkmark	No environmental correlation
XPXP	Summary	\checkmark	Limited to cross-population

mtPGS Advantages

- Flexible modeling: Mixture of bivariate normals
- Environmental correlations: Explicit sample overlap handling
- Computational efficiency: Deterministic algorithm scales linearly
- Broad applicability: Works with summary statistics only

Chang Xu, Santhi K. Ganesh, Xiang Zhou

mtPGS: Multi-Trait Assisted PRS15/18

Computational Efficiency & Scalability

Linear Scaling for Biobank-Scale Data

Computational Complexity:

Operation	Complexity
LD block diagonal	O(p)
Effect estimation/block	$O(b^3)$
Combining across blocks	O(p)
Total	<i>O</i> (<i>p</i>)

Memory Requirements:

- LD matrix: O(p) sparse storage
- Intermediate matrices: O(Mp)
- $\bullet\,$ Peak usage: ${\sim}8\text{GB}$ for 1M SNPs

Chang Xu, Santhi K. Ganesh, Xiang Zhou

Key Optimizations:

- 1. Block-diagonal LD
 - Reduces
 - $O(p^3) \rightarrow O(\sum_b b^3)$
 - Enables parallelization

2. Woodbury Identity

- $\circ \hspace{0.2cm} O(n^3)
 ightarrow O(p^3)$ when $p \ll n$
- Avoids large inversions
- 3. Conjugate Gradient
 - Iterative solution
 - $\circ~ O(\sqrt{\kappa})$ convergence

Scalability

Linear scaling enables application to biobank data (n > 500K) mtPGS: Multi-Trait Assisted PRS16/18

Discussion & Future Directions Extending the mtPGS Framework

Current Achievements:

- \checkmark Flexible SNP effect modeling
- \checkmark Environmental correlation handling
- \checkmark Scalable deterministic algorithm
- ✓ Demonstrated real-data improvements
- \checkmark Open source implementation

Methodological Innovations:

- Mixture of bivariate normals
- Explicit sample overlap modeling
- C+T partitioning strategy
- Linear computational complexity Chang Xu, Santhi K. Ganesh, Xiang Zhou

Future Research Directions:

- **1. Functional Annotations**
 - Incorporate genomic features
 - Tissue-specific effects

2. Local Genetic Correlations

- $\circ~$ Region-specific ρ_g estimation
- Chromosome-level modeling

3. Related Samples

- Family-based studies
- Population structure

4. Multi-ancestry Extension

- Cross-population predictions
- Ancestry-specific effects

mtPGS: Multi-Trait Assisted PRS17/18

Conclusion mtPGS: A Flexible Framework for Multi-Trait Polygenic Prediction

Key Contributions

- 1. **Novel Statistical Framework**: Flexible mixture modeling of SNP effects with explicit environmental correlations
- 2. **Computational Innovation**: Deterministic algorithm achieving linear scalability in SNP number
- 3. Validation: Systematic improvements across 25 diverse traits in UK Biobank

Performance Highlights:

- 0.9-52.9% accuracy gains
- 13/15 quantitative traits improved
- 7/10 binary traits improved
- Robust across genetic architectures

Practical Impact:

- Enhanced precision medicine
- Improved risk stratification
- Better understanding of trait relationships
- Open source availability

Code: https://github.com/xuchang0201/mtPGS

Thank you for your attention!

Chang Xu, Santhi K. Ganesh, Xiang Zhou

mtPGS: Multi-Trait Assisted PRS18/18