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Motivation & Problem Statement
Limitations of Current Polygenic Score Construction
Current Challenges:

e SNP effect size estimation suffers from noise

e Univariate methods ignore trait correlations
e Existing multivariate methods have limitations:

o Inflexible modeling assumptions
o lIgnore environmental correlations
o Computationally intensive (MCMC)

PGS Formula:

Key Insight:
. . . . P
o Genetic correlations among traits contain -
. . PGS; = Xii B;
information ! Z; i
J:
e Environmental correlations due to sample
overlap where x;; is genotype, [3; is effect

e Need a flexible, scalable framework size
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Technical Challenges in Multivariate PGS Methods

Limitations of Existing Approaches

Method Input Architecture Key Limitations

Model
wMT-SBLUP Summary Multivariate Normal ~ Simple covariance structure
MTAG Summary Linear Combination ~ No environmental correlation
XPXP Summary Cross-population Limited to population differences
BVR Individual Bivariate Ridge Requires individual data
MTGBLUP Individual Multivariate BLUP Not scalable to biobanks

Fundamental Issues:

1. Inflexible Effect Size Distribution: Single multivariate normal cannot capture
complex genetic architectures

2. Environmental Correlation Ignored: Sample overlap creates dependencies not
modeled

3. Computational Scalability: MCMC methods don’t scale to biobank data
(n > 500K)

4. Over-shrinkage Problem: Large effects get inappropriately shrunk toward zero
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mtPGS Statistical Framework

Flexible Bivariate Modeling with Environmental Correlations

Regression Model Setup: For target trait yp and relevant trait yp,:

yo = Xy Bo+ €y (non-overlapping individuals) (1)
Y = XmBm + €y, (non-overlapping individuals) (2)
[70, Fm] = X[Bo, Bm] + [€0,ém]  (overlapping) (3)

Flexible SNP Effect Prior - Mixture of Bivariate Normals:

4
[501] ~ 3" mBN (0, E)
Bimj k=1

Four Component Mixture: Covariance Structure:
e 1. Large effects on both traits >
OOI/s Pg001/sTml/s
e 7ig: Large on target, small on relevant = 2
Pg001/sOml/s Uml/s
e mo1: Small on target, large on relevant
e moo: Small effects on both traits I/s indicates large/small effect
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Environmental Correlation Modeling
Explicit Treatment of Sample Overlap Dependencies

Environmental Effect Model:
For non-overlapping individuals: €}; ~ N'(0,03,), €% ~N(0,02,)

mj » Y me

For overlapping individuals: [SO'} ~ BN (0,V.)

€mi
2
g J0e0
where V, = Oe Pe00eTme
Pe00e0 me O me

() D Relevan

pe Models environmental correlation in overlap region
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Deterministic Inference Algorithm (1/2)
Scalable Alternative to MCMC

Key Innovation: Replace 4P dimensional MCMC search with deterministic
approximation

GECKO Parameter Estimation:
e Heritability (h?): Method-of-moments estimator
e Genetic correlation (pg): Cross-trait LD score regression

e Environmental correlation (pe): Sample overlap-based estimation
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Deterministic Inference Algorithm (2/2)
Scalable Alternative to MCMC

Algorithm 1 mtPGS Deterministic Algorithm

1: Input: GWAS summary statistics, LD matrix R

2: Estimate h?, pg, pe using GECKO

3: for each trait pair (target + relevant) do

4:  ldentify large-effect SNPs via C4+T procedure:

5 Parameters: p-threshold € {107°,107°, 107,108}
6 LD threshold r? € {0.1,0.2,0.25}, window = 1000kb
7: Partition SNPs: 8= [8],8]]"

8:  Solve linear system for 3,, B3,:

9: B=XTE !X+D 1) IX"x 1y

10:  Construct PGS: s, = x7 3,
11: end for

12: Combine PGSs: s =) w5y (weights via cross-validation)
13: Output: Final polygenic score s
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Analytical Solution Details

Closed-Form Expressions for Effect Size Estimation

Linear System Solution: 3 = (XTZ"1X + D~1)~1xTx -1y

where:
e X: Phenotypic covariance matrix, D: Prior precision matrix (mixture-dependent)
e Analytical forms for large/small effect SNPs
Large Effect SNPs: LE;’O'} - Knms\”lgl + [&&;”5 9 D ®S/,]_1z,
ml
Small Effect SNPs:

o n
&) -
6/715

« Sy, Sss: LD matrices for large/small effect SNPs, z,,zg’dj: (Adjusted) Z-score vectors

J -1
2(Vg ® 1pg) ™t + <nmsv;1 + {0090 o &7‘; *D ® Sss] 229

me "m
where:

~D A A A
~ & 5050 . .
o Vy=1, .0 Pg0s7ms | Genetic covariance
Pg00s0 ms Oms
. 52 BeBocb
o Vo=, 0 €5 ™ |: Environmental covariance
Pe00e0 me O me
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Computational Optimizations
Achieving Linear Scalability in SNP Number
1. Block-Diagonal LD Approximation: 3. Preconditioned Conjugate Gradient:
e Solve Ax = b iteratively
R ~ blockdiag(R1, Rz, ...,Rp)

e Avoid explicit matrix inversion

e Convergence in O(y/k) iterations

o Follow Berisa et al. LD block structure ~ Overall Complexity:

e Reduces O(p3) to O(Zb b3) Operation Complexity
Operations LD block diagonal O(p)
Effect estimation/block o(b®)
e Enables parallel computation across Combining across blocks  O(p)
blocks Total O(p)
2. Woodbury Matrix Identity: Memory Requirements:

(A+UCV)"! = A"1_A-lU(C 1 +VA~IU) VA~ e LD matrix: O(p) sparse storage
e Transforms large matrix inversions ¢ Intermediate matrices: O(Mp)
o O(n?) = O(p?) when p < n e Peak usage: ~8GB for 1M SNPs
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Experimental Validation: Simulation Study (1/2)

Comprehensive Evaluation Across Genetic Architectures

Simulation Setup:
e n = 12,000 individuals, p = 100,000 SNPs from UK Biobank
e Three genetic architectures: Polygenic, Sparse, Hybrid
e Varying genetic correlation p, € {0.1,0.3,0.5,0.7,0.9}
e Environmental correlation p. € {0,0.3,0.6}

Sample overlap patterns: Complete, Partial, No overlap
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Experimental Validation: Simulation Study (2/2)

Comprehensive Evaluation Across Genetic Architectures

Genetic Architecture Details:
Scenario | (Polygenic):

e All SNPs have non-zero effects
° ,@j ~ BN(0, 3,)
Scenario Il (Sparse):
e 1% SNPs have large effects
e 80% of causal SNPs correlated
e 20% trait-specific effects
Scenario I1l (Hybrid):
e Mixture of polygenic 4 sparse

e Models real trait architectures
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Prediction R?

g mtPGS

.-, PRS-CS
_.-z70-2 DBSLMM

Genetic Correl

Key Results:
e Average 3.65% accuracy gain
e Performance scales with pg
e Robust across architectures

e Benefits increase with overlap
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UK Biobank Real Data Results

25 Traits Across Quantitative and Binary Phenotypes

Quantitative Traits (15 traits):

Trait mtPGS Best Baseline Gain (%)
Height  0.524 0.509 (PRS-CS) 2.9
BMI 0134  0.131 (DBSLMM) 23
WHR 0.089 0.084 (PRS-CS) 6.0
SBP 0.091  0.086 (MegaPRS) 58
DBP 0.076 0.071 (PRS-CS) 7.0
HDL 0.201 0.131 (DBSLMM) 53.4
LDL 0.141 0.133 (PRS-CS) 6.0
TC 0.189 0.179 (PRS-CS) 56
TG 0.124 0.119 (MegaPRS) 4.2

Binary Traits (10 traits):

Trait mtPGS Best Baseline Gain (%)
CAD 0.032 0.031 (PRS-CS) 3.2
T2D 0.041  0.040 (DBSLMM) 25
Depression 0.022 0.021 (MegaPRS) 4.8
Asthma 0.018 0.017 (PRS-CS) 5.9
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Performance Summary
Comprehensive Evaluation Across Real Data

Quantitative Traits: Performance Correlates With:
e 13/15 traits show best performance e Trait heritability (r = 0.87 — 0.98)
e Average 2.25% accuracy gain e Number of relevant correlated traits
e Up to 52.9% improvement (HDL) e Strength of genetic correlations
e Robust across diverse phenotypes e Sample overlap patterns

Binary Traits: Key Finding

* 7/10 traits show best performance Performance gains are systematic and
* Average 0.89% accuracy gain predictable based on trait characteristics
e Consistent improvements across

disease types

e Robust to regression type differences
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Method Comparison
mtPGS vs State-of-the-Art Approaches

Method Input Multivariate Key Limitation

mtPGS Summary v None

DBSLMM Summary X Univariate only

PRS-CS Summary X MCMC computational cost
MegaPRS Summary X Heritability estimation
wMT-SBLUP  Summary v Simple covariance structure
MTAG Summary v No environmental correlation
XPXP Summary v Limited to cross-population

mtPGS Advantages
o Flexible modeling: Mixture of bivariate normals
e Environmental correlations: Explicit sample overlap handling
e Computational efficiency: Deterministic algorithm scales linearly

e Broad applicability: Works with summary statistics only
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Computational Efficiency & Scalability
Linear Scaling for Biobank-Scale Data

Computational Complexity:

Operation Complexity
LD block diagonal O(p)
Effect estimation/block O(b%)
Combining across blocks O(p)
Total O(p)

Memory Requirements:
e LD matrix: O(p) sparse storage
e Intermediate matrices: O(Mp)
e Peak usage: ~8GB for 1M SNPs

Chang Xu, Santhi K. Ganesh, Xiang Zhou

Key Optimizations:
1. Block-diagonal LD
o Reduces
O(p*) = O(32, b°)
o Enables parallelization
2. Woodbury ldentity
o 0(n®) — O(p®) when
pLn
o Avoids large inversions
3. Conjugate Gradient
o lterative solution
o O(y/k) convergence
Scalability

Linear scaling enables application

to biobank data (n > 500K)
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Discussion & Future Directions
Extending the mtPGS Framework

Current Achievements: Future Research Directions:

e V Flexible SNP effect modeling 1. Functional Annotations
o Incorporate genomic features

e v Environmental correlation handling | 5
o Tissue-specific effects

e v Scalable deterministic algorithm 5 Local Genetic Correlations

° ‘/ Demonstrated real-data o Region-specific p, estimation
improvements o Chromosome-level modeling
e v Open source implementation 3. Related Samples

o Family-based studies

Methodological Innovations: o Population structure

) .. . Multi- E i
e Mixture of bivariate normals 4 ulti-ancestry Extension

o Cross-population predictions

e Explicit sample overlap modeling o Ancestry-specific effects

e C+T partitioning strategy

e Linear computational complexity
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Conclusion
mtPGS: A Flexible Framework for Multi-Trait Polygenic Prediction

Key Contributions

1. Novel Statistical Framework: Flexible mixture modeling of SNP effects with explicit
environmental correlations

2. Computational Innovation: Deterministic algorithm achieving linear scalability in SNP
number

3. Validation: Systematic improvements across 25 diverse traits in UK Biobank

Performance Highlights: Practical Impact:
e 0.9-52.9% accuracy gains e Enhanced precision medicine
e 13/15 quantitative traits improved e Improved risk stratification
e 7/10 binary traits improved e Better understanding of trait relationships
e Robust across genetic architectures e Open source availability

Code: https://github.com/xuchang0201/mtPGS

Thank you for your attention!
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