

Designing Representation Learning Methods For Molecular Sequences Analysis

Presented By

SARWAN ALI <u>Committee Chair:</u> Murray Patterson

Committee Members: Alexander Zelikovsky, Esra Akbas, José Bento

Georgia State University December 24, 2024

Table of Contents

1 Introduction

2 Motivation

Operation 3 Problem Formulation

Our Idea

5 Evaluation Metrics

6 Dataset

æ

Introduction

- Predicting the impact of amino acid changes on protein function is essential for applications such as disease variant classification and protein engineering
- Computing pairwise sequence similarity becomes more important for
 - Supervised analysis => Protein function prediction
 - Unsupervised Analysis => Pattern recognition
 - Data visualization
- The t-distributed stochastic neighbor embedding (t-SNE):
 - It is a method for interpreting high dimensional (HD) data by mapping each point to a low dimensional (LD) space (usually two-dimensional)
 - Used for better visualization
 - Dimensionality reduction
- Overall, Sequence analysis is:
 - Crucial for understanding evolutionary relationships
 - Infer the functional and structural properties
 - Identifies disease-causing mutations and drug targets

Background: t-SNE and Dimensionality Reduction

While t-SNE captures overall structure well, it may struggle to preserve local structure efficiently. This limitation prompted our research into alternative approaches

- High-dimensional Data
 - Complex datasets with multiple features
- t-SNE Processing
 - Computes pairwise similarities and reduces dimensionality
- Visualization
 - Represents data in 2D or 3D space for analysis

- Traditional analytical approaches (Sequence Alignment or Phylogenetic Analysis, etc.) fails,
 - Building a tree out of a large dataset can be difficult
 - Computationally intensive and time-consuming
 - Not general purpose in using for supervised analysis, unsupervised analysis, and visualization

Supervised/Unsupervised Analysis

- Machine Learning (ML)/ Deep Learning (DL) techniques
- Challenges:
 - ${\scriptstyle \bullet}\,$ We need to convert sequences into a format suitable for ML/DL models

Solution:

- Sequence Representation (Embeddings)
 - Convert the molecular sequences into a numerical format

Visualization:

• Using different kernels and initialization techniques

The vast global spread of pandemics like COVID-19, pushing viral sequence analysis into the "Big Data" realm <u>Motivations:</u>

- Understanding the immune invasion and host-to-host transmission properties of SARS-CoV-2 and its variants
- Knowledge of mutations and variants will help identify transmission patterns facilitate public health measures
- This will also help in vaccine design and efficacy

Goals:

- High dimensionality data in biological sequences
 - Better low-dimensional Visualization
 - Improve performance and reduce computational cost

Recall Previous Works

Kernel-based:

- String Kernel
- PCD2Vec

Feature Engineering:

- Spike2Vec
- PWM2Vec
- SSM2Vec
- Virus2Vec

Hashing-based:

- Murmur2Vec
- 2 BioSequence2Vec

Benchmarking:

Benchmarking ML Robustness

Input:

- A set of *N* protein sequences: $S = \{s_1, s_2, ..., s_N\}$, where s_i is a sequence of amino acids
- Each sequence s_i is represented as a string over the alphabet $\Sigma = \{A, C, D, E, F, G, ...\}$

Output:

- Embeddings $\mathcal{Z} \in \mathbb{R}^{N \times d}$
- $\mathcal{Z} = \{\mathbf{z}_1, \mathbf{z}_2, \dots, \mathbf{z}_N\}$ for downstream tasks

- MIK: Modified Isolation Kernel for Biological Sequence Visualization, Classification, and Clustering
 - Accepted at Machine Learning for Health (ML4H) 2024
- Position Specific Scoring Is All You Need? Revisiting Protein Sequence Classification Tasks
 - <u>Under review</u> at Annual Conference of the Nations of the Americas Chapter of the Association for Computational Linguistics (NAACL) 2025

• MIK: Modified Isolation Kernel for Biological Sequence Visualization, Classification, and Clustering

Visualization

• t-SNE => Gaussian kernel, Isolation kernel

Supervised Analysis

 Classification => feature engineering, kernel functions, neural networks, LLMs

Unsupervised Analysis

• Clustering => DBSCAN, ...

Visualization

- Better preservation of neighborhood for visualization
- Fast computational time
- Supervised Analysis
 - Higher predictive performance
 - Preserve maximum information in low dimensional embeddings
- **Unsupervised Analysis**
 - Better grouping and cluster separations
 - Preserve maximum information in low dimensional embeddings

- We propose the Modified Isolation Kernel (MIK), as an alternative to the Gaussian and Isolation kernel
- It is intended to address the existing shortcomings in preserving local and global structures and handling noisy data and outliers
- MIK is evaluated using a variety of initialization techniques
 - Random initialization
 - PCA-based initialization
 - Random walk-based initialization
- The random walk-based initialization for such biological data is not been explored in the literature

э

イロト イヨト イヨト イヨト

Problem Formulation

- Given dataset $X = \{x_1, x_2, ..., x_n\}$ in \mathbb{R}^d
- Assume a dataset $Y = \{y_1, y_2, ..., y_n\}$
- Objective: Map $X \in \mathbb{R}^d$ to $Y \in \mathbb{R}^{d'}$, such that d' < d
- *d'* = 2 or 3
- The similarity between points is preserved as much as possible
- Goal: Map points from X to Y such that the probability distribution between P_{ij} and Q_{ij} are as close as possible
- The similarity between a pair of points x_i, x_j in the higher dimensional space is represented by a probability P_{ij}
- The similarly for low dimensional space points y_i, y_j is represented by Q_{ij}

$$\mathcal{K}(x_i,x_j) = exp(rac{-||x_i-x_j||^2}{2\sigma_i^2})$$

メロト メポト メヨト メヨト

3

It measures the isolation of a data point from its neighbors 1 Pairwise Squared Distances:

$$D_{ij} = ||x_i - x_j||^2$$

2 Perplexity and Effective Neighborhood Size:

$$H(P_i) = \log\left(\sum_j P_{ij}\right) + \beta \frac{\sum_j D_{ij} P_{ij}}{\sum_j P_{ij}}$$

H(*P_i*) represents the entropy of *P_i* for the *i*-th point *P_{ii}* = exp(-βD_{ii}) represents the similarity between points *x_i* and *x_i*

3 Scaling Parameter (Beta) Adjustment:

$$\beta = \frac{\text{Perplexity}}{\text{distance scaling} \cdot (\max(D_i) + \epsilon)}$$

his beta adjustment is repeated until $H(P_i) \approx \log(\text{Perplexity})$

Т

4 Kernel Matrix Construction:

$$P_{ij} = rac{P_{ij}}{\sum_j P_{ij}}$$

where each row in P sums to 1, providing a probabilistic interpretation of the kernel

The Modified Isolation Kernel incorporates two additional components: a *distance scaling* factor and *weights* for each point

The distance scaling factor is computed based on the average pairwise distance between all points in the dataset X = {x₁, x₂,..., x_n}:

$$D_{ij} = \|x_i - x_j\|$$

where D_{ij} is the Euclidean distance between points x_i and x_j . The distance scaling factor *s* is then calculated as:

$$s = \frac{1}{n(n-1)} \sum_{i=1}^{n} \sum_{j \neq i} D_{ij}$$

This scaling factor is used to normalize the distances, ensuring that the neighborhood sizes are comparable across different datasets • Weights Adjustment: After normalizing *P_i* for each point *i*, weights *w_i* are applied to modulate the values in *P*:

$$P_{ij} = \frac{P_{ij}}{\sum_j P_{ij}} \cdot w_i$$

where:

• w_i is a weight applied to row *i* to adjust its influence on the kernel

- The weights are computed based on the density of points around each data point, using the **DBSCAN** (Density-Based Spatial Clustering of Applications with Noise) algorithm.
- The DBSCAN algorithm assigns a weight (or label) to each point according to its neighborhood density. The parameters for DBSCAN include:
 - Epsilon ϵ : the maximum distance between two points to be considered neighbors
 - min samples: the minimum number of points required in a neighborhood for a point to be considered a core point

Weights Computation Using DBSCAN (Contd.)

- Given the dimensionality of the data d, the minimum samples parameter min samples is set to d + 1
- This ensures that the density estimation accounts for the dimensionality of the dataset, with ϵ chosen based on dataset-specific properties
- The weights *w_i* for each point *x_i* are defined as the labels assigned by DBSCAN:

 $w_i = \mathsf{DBSCAN}(x_i)$

where points labeled as noise by DBSCAN receive a weight of -1.

• These weights can then be incorporated into the Isolation Kernel to emphasize regions with higher or lower point densities

$$w_i = \begin{cases} \text{cluster label of } x_i & \text{if } x_i \text{ is in a dense region} \\ -1 & \text{if } x_i \text{ is labeled as noise} \end{cases}$$

• This approach helps to adjust the kernel by accounting for both the average distances and the density-based clustering within the dataset

Kernel Comparison

Isolation Kernel:

$$P_{ij} = rac{\exp(-eta D_{ij})}{\sum_j \exp(-eta D_{ij})}$$

• Modified Isolation Kernel with Distance Scaling and Weights:

$$P_{ij} = rac{\exp(-eta D_{ij}^{ ext{scaled}})}{\sum_{j} \exp(-eta D_{ij}^{ ext{scaled}})} \cdot w_{ij}$$

Where:

- β is adjusted iteratively to match the perplexity
- $D_{ij}^{\text{scaled}} = D_{ij} \cdot \text{distance-scale}$ adjusts the distance, and w_i applies optional point-specific weights

• Neighborhood Agreement (NA):

$$\mathit{NA} = 1 - rac{2}{\mathit{N}(\mathit{N}-1)}\sum_{i=1}^{\mathit{N}}\sum_{j
eq i} \left| rac{d_{ij}^{\mathit{H}} - d_{ij}^{\mathit{L}}}{d_{ij}^{\mathit{H}} + d_{ij}^{\mathit{L}}}
ight|$$

• Trustworthiness (TW) :

$$TW = 1 - \frac{2}{N \cdot k \cdot (2N - 3k - 1)} \sum_{i=1}^{N} \sum_{j \in R_k} (R_{ij} - R_{ij}^L)$$
(2)

э

(1)

- We use Support Vector Machine (SVM), Naive Bayes (NB), Multi-Layer Perceptron (MLP), K-Nearest Neighbour (KNN), Random Forest (RF), Logistic Regression (LR), and Decision Tree (DT) classifiers
- We use average accuracy, precision, recall, weighted, and ROC area under the curve (AUC) as evaluation metrics for measuring the goodness of classification algorithms

- Silhouette Coefficient [1]
- Calinski-Harabasz Index [2]
- Davies-Bouldin Index [3]

Dataset	Sea	Classes	Seq	Sequence Length		Detail	
Butaber	00q.	0.05505	Max	Min	Mean		
Protein Subcellular [4]	5959	11	3678	9	326.27	The unaligned protein sequences hav- ing information about subcellular lo- cations.	
GISAID [5]	7000	22	1274	1274	1274.00	The aligned spike sequences of the SARS-CoV-2 virus having the infor- mation about the Lineage of each se- quence.	
Nucleotide [6]	4380	7	18921	5	1263.59	Unaligned nucleotide sequences to classify gene family to which humans belong	

Ξ.

イロト イヨト イヨト イヨト

- Spike2Vec [7]
- Spaced k-mer [8]
- PWM2Vec [9]

э

k-mers spectrum 1

¹https://www.sciencedirect.com/science/article/pii/S20010370240017033.ce

Gapped 3-mers for Sequence: ADCEFGHIK

	Original k-mer	Gap at 1st	Gap at 2nd	Gap at 3rd
1	ADC	-DC	A-C	AD-
2	DCE	-CE	D-E	DC-
3	CEF	-EF	C-F	CE-
4	EFG	-FG	E-G	EF-
5	FGH	-GH	F-H	FG-
6	GHI	-HI	G-I	GH-
7	HIK	-IK	H-K	HI-

イロト イヨト イヨト イヨト

3

< □ > < 同 > < 回 > < 回 > < 回 >

- Random Initialization
- PCA-based Initialization
- Random Walk-based Initialization

Results - Nucleotide Dataset

Results - GISAID Dataset

(a) Spike2Vec (Rand.)

(d) Spike2Vec (PCA)

(b) Spaced k-mers (Rand.)

(h) Spaced *k*-mers (Walk)

Isolation Weighted Isolation

(c) PWM2Vec (Rand.)

(f) PWM2Vec (PCA)

(Georgia State University)

Results - Protein Subcellular Dataset

Classification Results - Protein Subcellular Dataset

Kernel	Embeddings	Algo.	Acc. ↑	Prec. ↑	$Recall \uparrow$	F1 (Weig.)	F1 (Macro)	ROC AUC	Train Time
						T	T	T	(sec.) ↓
		SVM	0.5207	0.5190	0.5207	0.5110	0.3947	0.6630	9.7228
		NB	0.3876	0.4438	0.3876	0.3965	0.3206	0.6376	0.0554
		MLP	0.4640	0.4424	0.4640	0.4487	0.2990	0.6196	9.8790
Gaussian	PWM2Vec	KNN	0.5634	0.5671	0.5634	<u>0.5550</u>	0.4567	0.6950	0.1219
		RF	0.5252	0.6064	0.5252	0.4835	0.3176	0.6215	6.8668
		LR	0.5085	0.4830	0.5085	0.4654	0.2709	0.6106	0.4873
		DT	0.3668	0.3702	0.3668	0.3677	0.2597	0.5978	0.6648
		SVM	0.6493	0.6550	0.6493	0.6487	0.4977	0.7326	9.7372
		NB	0.2701	0.3615	0.2701	0.2285	0.2426	0.6714	0.0455
		MLP	0.7796	0.7727	0.7796	0.7752	0.6105	0.7917	11.8214
Isolation	Spike2Vec	KNN	0.8546	0.8595	0.8546	0.8522	0.7464	0.8622	0.1707
		RF	0.8345	0.8538	0.8345	0.8069	0.5968	0.7712	5.9505
		LR	0.2450	0.0600	0.2450	0.0964	0.0358	0.5000	0.2048
		DT	0.6913	0.6973	0.6913	0.6919	0.5203	0.7430	0.6885
		SVM	0.8697	0.8767	0.8697	0.8712	0.7327	0.8663	1.1591
Madified		NB	0.4010	0.5894	0.4010	0.3824	0.3661	0.7481	0.0364
Isola- Spaced	Spaced	MLP	0.8937	<u>0.8971</u>	0.8937	<u>0.8949</u>	<u>0.7847</u>	<u>0.8907</u>	10.0736
	/ more	KNN	0.6119	0.6231	0.6119	0.5914	0.4010	0.6817	0.1299
(Ourc)	A-IIICI S	RF	0.8982	0.8947	0.8982	0.8867	0.7125	0.8443	6.3723
(Ours)		LR	0.2204	0.2584	0.2204	0.0811	0.0337	0.5003	0.2525
		DT	0.7265	0.7377	0.7265	0.7301	0.5701	0.7793	1.0005

æ

Classification Results - GISAID Dataset

Kernel	Embeddings	Algo.	Acc. ↑	Prec. ↑	Recall ↑	F1 (Weig.) ↑	F1 (Macro) ↑	ROC AUC ↑	Train Time (sec.) ↓
		SVM	0 7397	0.6998	0 7397	0 7009	0 3060	0.6541	3 4177
		NB	0.1564	0.6631	0.1564	0.2226	0.1312	0.5745	0.0866
		MLP	0.7696	0.7308	0.7696	0.7388	0.4025	0.7111	8.2361
Gaussian	Spike2Vec	KNN	0.7678	0.7725	0.7678	0.7634	0.5223	0.7560	0.1034
		RF	0.7872	0.7809	0.7872	0.7762	0.5342	0.7637	2.8961
		LR	0.7174	0.6514	0.7174	0.6686	0.2447	0.6226	1.2611
		DT	0.7756	0.7702	0.7756	0.7668	0.5106	0.7550	0.2956
		SVM	0.4972	0.3674	0.4972	0.3814	0.1007	0.5331	11.9771
		NB	0.0276	0.2183	0.0276	0.0271	0.0314	0.5203	0.1053
	Canad	MLP	0.6499	0.6187	0.6499	0.6276	0.1884	0.5922	14.1174
Isolation	Spaced	KNN	0.6490	0.6460	0.6490	0.6356	0.2063	0.5892	0.1331
	K-mers	RF	0.7029	0.6777	0.7029	0.6799	0.3469	0.6488	6.2961
		LR	0.4883	0.2385	0.4883	0.3205	0.0298	0.5000	0.6894
		DT	0.6379	0.6457	0.6379	0.6404	0.2828	0.6329	0.8870
		SVM	0.6820	0.6764	0.6820	0.6762	0.3117	0.6446	12.7645
Marca		NB	0.5952	0.6176	0.5952	0.5962	0.2017	0.6008	0.1153
loolo		MLP	0.6741	0.6552	0.6741	0.6584	0.2493	0.6194	13.1291
ISOId-	PWM2Vec	KNN	0.6559	0.6493	0.6559	0.6453	0.2222	0.5966	0.1637
(Ours)		RF	0.7103	0.6955	0.7103	0.6983	0.3612	0.6619	12.8492
(ouis)		LR	0.4748	0.2255	0.4748	0.3057	0.0293	0.5000	0.6317
		DT	0.6709	0.6752	0.6709	0.6717	0.3168	0.6514	1.6763

Image: A matrix

2

Classification Results - Nucleotide Dataset

Kernel	Embeddings	Algo.	Acc. ↑	Prec. ↑	Recall ↑	F1 (Weig.) ↑	F1 (Macro) ↑	ROC AUC ↑	Train Time (sec.)↓
		SVM	0 3688	0.6767	0 3688	0 2707	0.2116	0 5447	1 0749
		NB	0.1317	0.7136	0.1317	0.1384	0.1435	0.5411	0.0125
		MLP	0.3857	0.7391	0.3857	0.2926	0.2315	0.5533	3.1893
Gaussian	Spaced	KNN	0.2697	0.3876	0.2697	0.2560	0.2308	0.5560	0.0560
	k-mers	RF	0.4295	0.6904	0.4295	0.3664	0.3188	0.5873	2.0117
		LR	0.3612	0.7508	0.3612	0.2478	0.1825	0.5360	0.1341
		DT	0.4285	0.6625	0.4285	0.3663	0.3198	0.5880	0.2364
		SVM	0.3213	0.3221	0.3213	0.3079	0.2588	0.5728	3.8166
		NB	0.2323	0.4337	0.2323	0.1836	0.2043	0.5560	0.0123
		MLP	0.5275	0.5203	0.5275	0.5192	0.4616	0.6858	7.3494
Isolation	Spike2Vec	KNN	0.5283	0.5340	0.5283	0.5275	0.4976	0.7093	0.0585
		RF	0.7469	0.7539	0.7469	0.7452	0.7345	0.8314	3.4126
		LR	0.3105	0.0965	0.3105	0.1472	0.0677	0.5000	0.0795
		DT	0.6151	0.6161	0.6151	0.6150	0.5866	0.7605	0.3282
		SVM	0.5798	0.5762	0.5798	0.5728	0.5358	0.7273	2.6021
M. 100.1		NB	0.2604	0.3666	0.2604	0.2363	0.2463	0.5700	0.0080
Modified Isola- Spaced	Spaced	MLP	0.6207	0.6208	0.6207	0.6178	0.5734	0.7498	7.1481
	spaced k more	KNN	0.5050	0.5093	0.5050	0.5041	0.4755	0.6954	0.0611
(Ourc)	K-IIICIS	RF	0.7481	0.7689	0.7481	0.7455	<u>0.7366</u>	0.8316	4.1538
(ouis)		LR	0.3096	0.1191	0.3096	0.1466	0.0679	0.5001	0.0931
		DT	0.6237	0.6257	0.6237	0.6237	0.5959	0.7644	0.3863

æ

Clustering Results - Protein Subcellular Dataset

Kernel	Embeddings	Algo.	Silhouette ↑	Calinski ↑	Davies ↓
	Spike2Vec	K-means Agglomerative K-Modes	0.101796 0.078076 -0.359683	360.804549 322.784851 1.646458	3.622216 3.585005 1.119053
Gaussian	Spaced k-mers	K-means Agglomerative K-Modes	0.126160 0.122294 -0.309347	428.163587 389.211763 4.658780	3.500538 3.418970 1.068371
	PWM2Vec	K-means Agglomerative K-Modes	0.061646 0.019724 -0.261891	271.209939 229.333382 1.060538	3.586904 4.163685 1.035597
Isolation	Spike2Vec	K-means Agglomerative K-Modes	0.015248 0.100906 -0.406924	58.296491 66.592869 0.230669	2.205289 2.267826 1.709086
	Spaced k-mers	K-means Agglomerative K-Modes	0.894164 0.894826 -0.494872	49.226179 54.900365 3.841355	0.064535 2.231084 2.039936
	PWM2Vec	K-means Agglomerative K-Modes	0.427347 0.892029 -0.382076	57.304634 64.086967 0.146916	2.029489 1.472744 1.543540
Modified	Spike2Vec	K-means Agglomerative K-Modes	0.100461 0.258273 -0.337161	875.4463 856.6747 0.404064	1.249022 1.088766 1.154124
Modified Isola- tion (Ours)	Spaced k-mers	K-means Agglomerative K-Modes	0.298419 0.845733 -0.491851	766.048709 807.127025 48.420757	1.279214 1.059536 2.083230
	PWM2Vec	K-means Agglomerative K-Modes	0.191296 0.295157 -0.358505	626.270386 594.130597 0.255160	1.425956 1.278188 1.504934

э

Clustering Results - GISAID Dataset

Kernel	Embeddings	Algo.	Silhouette ↑	Calinski ↑	Davies ↓
	Spike2Vec	K-means Agglomerative K-Modes	0.725709 0.728701 -0.724895	2360.1012 2401.6734 84.479174	0.803562 0.897672 1.082510
Gaussian	Spaced k-mers	K-means Agglomerative K-Modes	0.671649 0.697097 -0.526676	1758.287930 1750.801213 70.972746	0.582548 0.535291 1.769435
	PWM2Vec	K-means Agglomerative K-Modes	0.691450 0.660800 -0.520338	1435.243293 1401.089635 94.359037	0.693299 0.818952 2.462654
Isolation	Spike2Vec	K-means Agglomerative K-Modes	0.068962 0.597965 -0.594450	122.328499 130.992233 0.137340	0.912677 2.127489 2.041841
	Spaced k-mers	K-means Agglomerative K-Modes	0.926955 0.935912 -0.624410	85.446835 90.096434 0.397808	1.213278 0.796774 2.425513
	PWM2Vec	K-means Agglomerative K-Modes	0.942670 0.940357 -0.671301	90.830309 91.914837 0.143632	0.032672 0.929066 2.922499
Modified Isola- tion (Ours)	Spike2Vec	K-means Agglomerative K-Modes	0.062111 0.069198 -0.530450	191.373940 185.944651 1.363172	2.674008 2.621923 1.438185
	Spaced k-mers	K-means Agglomerative K-Modes	0.139867 0.134961 -0.461139	689.139460 688.940686 0.695404	1.760740 1.658960 1.294385
	PWM2Vec	K-means Agglomerative K-Modes	0.078648 0.058910 -0.377294	322.821055 312.395730 1.832262	2.010462 2.072378 1.199501

2

Clustering Results - Nucleotide Dataset

Kernel	Embeddings	Algo.	Silhouette ↑	Calinski ↑	Davies ↓
Gaussian	Spike2Vec	K-means Agglomerative K-Modes	0.845873 0.849057 -0.616155	100.442214 121.928330 0.680251	0.099883 0.097623 12.304512
	Spaced k-mers	K-means Agglomerative K-Modes	0.849962 0.851768 -0.710487	110.207433 122.335197 0.595153	0.097384 0.096128 12.299829
	PWM2Vec	K-means Agglomerative K-Modes	0.906833 0.907149 -0.783775	1216.9008 1242.8203 19.695747	0.950717 1.207521 1.991363
Isolation	Spike2Vec	K-means Agglomerative K-Modes	0.266999 0.142199 -0.398666	85.054216 95.157338 0.214001	2.373702 2.552974 1.951997
	Spaced k-mers	K-means Agglomerative K-Modes	0.059934 0.045584 -0.361089	79.041871 86.883693 0.390651	2.562520 2.917264 1.595999
	PWM2Vec	K-means Agglomerative K-Modes	0.493470 0.928548 -0.535966	63.606950 93.383507 6.971815	1.599440 0.510479 1.929305
Modified Isola- tion (Ours)	Spike2Vec	K-means Agglomerative K-Modes	0.326686 0.217707 -0.527625	16050.3293 15024.6706 6.309529	0.781717 1.035089 1.787152
	Spaced k-mers	K-means Agglomerative K-Modes	0.445578 0.414100 -0.618379	4740.6237 4529.5243 0.269577	0.496505 0.507057 2.518221
	PWM2Vec	K-means Agglomerative K-Modes	0.906386 0.906386 -0.486018	85715.7221 85715.7222 0.072697	0.201059 0.201059 2.195824

æ

Kernel	Protein Subcellular	GISAID	Nucleotide
Gaussian	89.12 sec.	6.69 sec.	1.81 sec.
Isolation	135.81 sec.	103.50 sec.	29.80 sec.
MIK	3.34 sec.	2.91 sec.	1.02 sec.
MIK vs. Gaussian % improvement	96.25%	56.50%	43.64%
MIK vs. Isolation % improvement	97.54%	97.18%	96.57%

2

Dataset	Best Performing	Worst Performing	
Protein Subcellular	Random Walk	Random	
GISAID	Random Walk	Random	
Nucleotide	Random Walk	Random	

• Recommendation for initialization method based on the summary of performance on different datasets.

Key Findings and Implications

- MIK as an alternative to the Gaussian kernel, which is built upon the concept of the Isolation Kernel
- MIK uses adaptive density estimation
- Several initialization techniques were evaluated.

While our research demonstrates the potential of MIK, there are several avenues for future work

э

イロト イヨト イヨト イヨト

• Position Specific Scoring Is All You Need? Revisiting Protein Sequence Classification Tasks

Thank You

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ のへで

- P. J. Rousseeuw, "Silhouettes: a graphical aid to the interpretation and validation of cluster analysis," *Journal of computational and applied mathematics*, vol. 20, pp. 53–65, 1987.
- T. Caliński and J. Harabasz, "A dendrite method for cluster analysis," Communications in Statistics-theory and Methods, vol. 3, no. 1, pp. 1–27, 1974.
- D. L. Davies and D. W. Bouldin, "A cluster separation measure," *IEEE transactions on pattern analysis and machine intelligence*, no. 2, pp. 224–227, 1979.
- Protein Subcellular Localization, https: //www.kaggle.com/datasets/lzyacht/proteinsubcellularlocalization, 2023, [Online; accessed 10-Jan-2023].
- GISAID Website, https://www.gisaid.org/, 2021, [Online; accessed 29-December-2021].

- Human DNA, https://www.kaggle.com/code/nageshsingh/ demystify-dna-sequencing-with-machine-learning/data, 2022, [Online; accessed 10-October-2022].
- S. Ali and M. Patterson, "Spike2vec: An efficient and scalable embedding approach for covid-19 spike sequences," in *IEEE International Conference on Big Data (Big Data)*, 2021, pp. 1533–1540.
- R. Singh, A. Sekhon, K. Kowsari, J. Lanchantin, B. Wang, and Y. Qi, "Gakco: a fast gapped k-mer string kernel using counting," in *Joint European Conference on Machine Learning and Knowledge Discovery in Databases*, 2017, pp. 356–373.
- S. Ali, B. Bello, P. Chourasia, R. T. Punathil, Y. Zhou, and M. Patterson, "Pwm2vec: An efficient embedding approach for viral host specification from coronavirus spike sequences," *MDPI Biology*, 2022.